Subscribe to RSS
DOI: 10.1055/s-2008-1072504
Synthesis of C3-C12 Fragment of 24-Demethylbafilomycin C1 via anti-Selective Aldol Condensation as the Key Stereocontrol Step
Publication History
Publication Date:
17 March 2008 (online)
Abstract
An efficient synthesis of the C3-C12 aldehyde fragment of 24-demethylbafilomycin C1 was accomplished for assembling the 16-membered plecomacrolide skeleton according to a 1,3-diene-ene ring-closing metathesis (RCM) strategy. A boron-mediated anti-selective aldol condensation of Abiko’s chiral propionate was used to secure the C6 and C7 stereogenic centers while the C8 chirality was introduced from a chiral building block. The dithiane alkylation and the methyl ketone Horner-Wittig olefination using allyldiphenylphosphine oxide were employed for construction of the requisite (E)-1,3-diene subunit.
Key words
anti-selective aldol - 1,3-diene - dithiane - Horner-Wittig olefination - α,β-unsaturated aldehyde
- 1
Bindseil KU.Zeeck A. Liebigs Ann. Chem. 1994, 305 - 2
Dai W.-M.Guan Y.Jin J. Curr. Med. Chem. 2005, 12: 1947 -
3a
Lu C.Shen Y. J. Antibiot. 2003, 56: 415 -
3b
Lu C.Shen Y. J. Antibiot. 2004, 57: 597 - 4
Werner G.Hagenmaier H.Drautz H.Baumgartner A.Zähner H. J. Antibiot. 1984, 37: 110 -
5a
Bowman EJ.Siebers A.Altendorf K. Proc. Natl. Acad. Sci. U. S. A. 1988, 85: 7972 -
5b
Drose S.Altendorf K. J. Exp. Biol. 1997, 200: 1 - 6
Yoshimoto Y.Jyojima T.Arita T.Ueda M.Imoto M.Matsumura S.Toshima K. Bioorg. Med. Chem. Lett. 2002, 12: 2525 - 7
Bowman BJ.McCall ME.Baertsch R.Bowman EJ. J. Biol. Chem. 2006, 281: 31885 - 8 For a review, see:
Beutler JA.McKee TC. Curr. Med. Chem. 2003, 10: 787 - For total synthesis of bafilomycin A1, see:
-
9a
Evans DA.Calter MA. Tetrahedron Lett. 1993, 34: 6871 -
9b
Toshima K.Jyokaaki T.Yamaguchi H.Murase H.Yoshida T.Mastumura S.Nakata M. Tetrahedron Lett. 1996, 37: 1069 -
9c
Toshima K.Yamaguchi H.Jyojima T.Noguchi Y.Nakata M.Mastumura S. Tetrahedron Lett. 1996, 37: 1073 -
9d
Toshima K.Jyojima T.Yamaguchi H.Noguchi Y.Yoshida T.Murase H.Nakata M.Mastumura S. J. Org. Chem. 1997, 62: 3271 -
9e
Scheidt KA.Tasaka A.Bannister TD.Wendt MD.Roush WR. Angew. Chem. Int. Ed. 1999, 38: 1652 -
9f
Scheidt KA.Bannister TD.Tasaka A.Wendt MD.Savall BM.Fegley GJ.Roush WR. J. Am. Chem. Soc. 2002, 124: 6981 -
9g
Hanessian S.Ma J.Wang W.Gai Y. J. Am. Chem. Soc. 2001, 123: 10200 ; Correction: J. Am. Chem. Soc. 2002, 124, 7249 -
9h
Quéron E.Lett R. Tetrahedron Lett. 2004, 45: 4539 ; and references cited therein -
10a
Paterson I.Bower S.McLeod MD. Tetrahedron Lett. 1995, 36: 175 -
10b
Marshall JA.Adams ND. J. Org. Chem. 2002, 67: 733 -
10c
Eustache F.Dalko PI.Cossy J. J. Org. Chem. 2003, 68: 9994 -
10d
Poupon J.-C.Demont E.Prunet J.Férézou J.-P. J. Org. Chem. 2003, 68: 4700 -
10e
Lopez R.Poupon J.-C.Prunet J.Férézou J.-P.Ricard L. Synthesis 2005, 644 - 11 For reviews on total synthesis of plecomacrolides, see:
Toshima K. Curr. Org. Chem. 2004, 8: 185 ; and ref. 2 - For selected reviews on RCM, see:
-
12a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
12b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
12c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
12d
Schrock RR.Hoveyda AH. Angew. Chem. Int. Ed. 2003, 42: 4592 -
12e
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
12f
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
12g
Gradillas A.Pérez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
12h
Schrodi Y.Pederson RL. Aldrichimica Acta 2007, 40: 45 -
12i
Hoveyda AH.Zhugralin AR. Nature (London) 2007, 450: 243 -
12j Also see:
Handbook of Metathesis
Vol. 1-3:
Grubbs RH. Wiley-VCH; Weinheim: 2003. - For selected examples of 1,3-diene-ene RCM in synthesis of macrocycles, see:
-
13a
Cabrejas LMM.Rohrbach S.Wagner D.Kallen J.Zenke G.Wagner J. Angew. Chem. Int. Ed. 1999, 38: 2443 -
13b
Dvorak CA.Schmitz WD.Poon DJ.Pryde DC.Lawson LP.Amos RA.Meyers AI. Angew. Chem. Int. Ed. 2000, 39: 1664 -
13c
Garbaccio RM.Danishefsky SJ. Org. Lett. 2000, 2: 3127 -
13d
Garbaccio RM.Stachel SJ.Baeschlin DK.Danishefsky SJ. J. Am. Chem. Soc. 2001, 123: 10903 -
13e
Biewas K.Lin H.Njardarson JT.Chappell MD.Chou T.-C.Guan Y.Tong WP.He L.Horwitz SB.Danishefsky SJ. J. Am. Chem. Soc. 2002, 124: 9825 -
13f
Paquette LA.Basu K.Eppich JC.Hofferberth JE. Helv. Chim. Acta 2002, 85: 3033 -
13g
Sedrani R.Kallen J.Cabrejas LMM.Papageorgiou CD.Senia F.Rohrbach S.Wagner D.Thai B.Eme A.-MJ.France J.Oberer L.Rihs G.Zenke G.Wagner J. J. Am. Chem. Soc. 2003, 125: 3849 -
13h
Yang Z.-Q.Danishefsky SJ. J. Am. Chem. Soc. 2003, 125: 9602 -
13i
Yang Z.-Q.Geng X.Solit D.Pratilas CA.Rosen N.Danishefsky SJ. J. Am. Chem. Soc. 2004, 126: 7881 -
13j
Barluenga S.Lopez P.Moulin E.Winssinger N. Angew. Chem. Int. Ed. 2004, 43: 3467 -
13k
Wang X.Bowman EJ.Bowman BJ.Porco JA. Angew. Chem. Int. Ed. 2004, 43: 3601 -
13l
Lemarchand A.Bach T. Tetrahedron 2004, 60: 9659 -
13m
Krishna CV.Maitra S.Dev RV.Mukkanti K.Iqbal J. Tetrahedron Lett. 2006, 47: 6103 -
13n
Va P.Roush WR. J. Am. Chem. Soc. 2006, 128: 15960 -
13o
Va P.Roush WR. Org. Lett. 2007, 9: 307 -
13p
Va P.Roush WR. Tetrahedron 2007, 63: 5768 -
13q
Meyer A.Brünjes M.Taft F.Frenzel T.Sasse F.Kirschning A. Org. Lett. 2007, 9: 1489 -
13r
Fürstner A.Nevado C.Waser M.Tremblay M.Chevrier C.Teplý F.Aïssa C.Moulin E.Müller O. J. Am. Chem. Soc. 2007, 129: 9150 - For diene-diene RCM used in synthesis of macrocycles, see:
-
13s
Wang X.Porco JA. J. Am. Chem. Soc. 2003, 125: 6040 -
13t
Evano G.Schaus JV.Panek JS. Org. Lett. 2004, 6: 525 - 14
Lu K.Huang M.Xiang Z.Liu Y.Chen J.Yang Z. Org. Lett. 2006, 8: 1193 -
15a
Guan Y. PhD Thesis Zhejiang University; P. R. of China: 2006. -
15b
Preliminary results on successful formation of the tetraene core of 1 in a model system via 1,3-diene-ene RCM were reported at The 9th International Symposium for Chinese Organic Chemists (ISCOC-9), Singapore, December 17-21, 2006, 85. For our recent RCM approach to form E-trisubstituted double bond in amphidinolide Y, see:
-
15c
Jin J.Chen Y.Li Y.Wu J.Dai W.-M. Org. Lett. 2007, 9: 2585 - 16
Guan Y.Wu J.Sun L.Dai W.-M. J. Org. Chem. 2007, 72: 4953 -
17a
Abiko A.Liu J.-F.Masamune S. J. Am. Chem. Soc. 1997, 119: 2586 -
17b
Inoue T.Liu J.-F.Buske D.Abiko A. J. Org. Chem. 2002, 67: 5250 -
17c
Abiko A. Acc. Chem. Res. 2004, 37: 387 - 18
Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1987, 26: 489 - 19
Mulzer J.Schulze T.Strecker A.Denzer W. J. Org. Chem. 1988, 53: 4098 -
20a
Ikeda Y.Ukai J.Ikeda N.Yamamoto H. Tetrahedron 1987, 43: 723 -
20b For a review, see:
Clayden J.Warren S. Angew. Chem., Int. Ed. Engl. 1996, 35: 241 -
21a
Heckrodt TJ.Mulzer J. Synthesis 2002, 1857 -
21b
Bailey WF.Punzalan ER. J. Org. Chem. 1990, 55: 5404 -
22a
Frigerio M.Santagostino M. Tetrahedron Lett. 1994, 35: 8019 -
22b
More JD.Finney NS. Org. Lett. 2002, 4: 3001 -
24a
Dess DB.Martin JC. J. Org. Chem. 1983, 48: 4155 -
24b
Meyer SD.Schreiber SL. J. Org. Chem. 1994, 59: 7549 -
24c
Boeckman RK.Shao P.Mulins JJ. Org. Synth. 2000, 77: 141 - 25 For a review, see:
Ley SV.Norman J.Griffith WP.Marsden SP. Synthesis 1994, 639 - 26
Nicolaou KC.Mathison CJN.Montagnon T. J. Am. Chem. Soc. 2004, 126: 5192
References and Notes
Procedure for Oxidation of the Alcohol 9 with Stabilized IBX to Form Aldehyde 10
To a solution of the alcohol 9 (1.990 g, 9.66 mmol) in DMSO (40 mL; without drying) was added stabilized IBX in six portions (45 wt%, 1.002 × 6 g, 9.66 mmol). After each addition of stabilized IBX, the resultant mixture was stirred for 2 h at r.t. The reaction was quenched by aq Na2S2O3 followed by addition of sat. aq NaHCO3. The aqueous mixture was extracted with EtOAc (100 × 2 mL) and the combined organic layer was dried over anhyd Na2SO4, filtrated, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO2, 14% EtOAc in hexane) to provide the aldehyde 10 (1.399 g, 71% yield).
Compound 10: yellow oil; [α]D
20 -2.2 (c 1.35, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 9.71 (d, J = 1.8 Hz, 1 H), 2.94-2.60 (m, 6 H), 2.10-1.80 (m, 2 H), 1.70 (dd, J = 14.7, 3.0 Hz, 1 H), 1.56 (s, 3 H), 1.15 (d, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 203.4, 48.3, 43.2, 42.5, 28.3, 26.5 (¥2), 24.6, 16.2. HRMS (ESI+): m/z calcd for C9H17OS2 [M + H+]: 205.0721; found: 205.0729.
We checked the diastereomeric ratio of the isolated aldol products prepared in several runs by 1H NMR spectroscopy and found that the ratio is about 95:5 in all cases. We did not obtain any separable minor diastereomers on the 3-gram-scale reaction, implying that the minor diastereomer is not separable from the major isomer.
28Epimerization of the aldehyde 20 obtained from both the DMP (aq NaHCO3, CH2Cl2, r.t.) and SIBX (DMSO, r.t.) oxidation was observed. The diastereomeric ratios are about 95:5. We are not sure whether the epimerization occurred during the oxidation or over silica gel during column chromatographic separation.
29
Physical and Spectroscopic Data of 3
Colorless oil; [α]D
20 31.9 (c 0.73, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 9.40 (s, 1 H), 6.72 (dd, J = 9.9, 1.2 Hz, 1 H), 6.61-6.48 (m, 1 H), 5.81 (d, J = 11.4 Hz, 1 H), 5.09 (dd, J = 16.8, 1.8 Hz, 1 H), 4.99 (d, J = 10.2 Hz, 1 H), 3.54 (dd, J = 4.5, 3.0 Hz, 1 H), 2.95-2.85 (m, 1 H), 2.19 (d, J = 8.4 Hz, 1 H), 1.85-1.64 (m, 2 H), 1.76 (s, 3 H), 1.71 (s, 3 H), 1.04 (d, J = 7.5 Hz, 3 H), 0.92 (s, 9 H), 0.74 (d, J = 6.3 Hz, 3 H), 0.07 (s, 3 H), 0.06 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 195.6, 157.6, 137.3, 137.2, 133.0, 127.4, 115.0, 79.4, 43.7, 36.9, 35.9, 26.0 (¥3), 18.6, 18.3, 16.3, 15.3, 9.3, -3.9, -4.0. HRMS (ESI+): m/z calcd for C21H39O2Si [M + H+]: 351.2719; found: 351.2729.