References and Notes
1
Sundberg RJ.
Indoles
Academic Press;
San Diego:
1996.
2
Lakhdar S.
Westermaier M.
Terrier F.
Goumont R.
Boubaker T.
Ofial AR.
Mayr H.
J. Org. Chem.
2006,
71:
9088
3 For a review, see: Bandini M.
Melloni A.
Tommasi S.
Umani-Ronchi A.
Synlett
2005,
1199
4 For a recent example, see: Kang Q.
Zhao Z.-A.
You S.-L.
J. Am. Chem. Soc.
2007,
129:
1484
5 For a review, see: Saracoglu N.
Top. Heterocycl. Chem.
2007,
11:
1
6 See, for instance: Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
5386
7
Bandini M.
Melloni A.
Umani-Ronchi A.
Org. Lett.
2004,
6:
3199
See, for instance:
8a
Reddy R.
Jaquith JB.
Neelagiri VR.
Saleh-Hanna S.
Durst T.
Org. Lett.
2002,
4:
695
8b
Bhuvaneswari S.
Jeganmohan M.
Cheng C.-H.
Chem. Eur. J.
2007,
13:
8285
8c
Jia Y.-X.
Zhong J.
Zhu S.-F.
Zhang C.-M.
Zhou Q.-L.
Angew. Chem. Int. Ed.
2007,
46:
5565
9a
Nishibayashi Y.
Yoshikawa M.
Inada Y.
Hidai M.
Uemura S.
J. Am. Chem. Soc.
2002,
124:
11846
9b
Kennedy-Smith JJ.
Young LA.
Toste FD.
Org. Lett.
2004,
6:
1325
9c
Zaitsev AB.
Gruber S.
Pregosin PS.
Chem. Commun.
2007,
4692
9d
Whithney S.
Grigg R.
Derrick A.
Keep A.
Org. Lett.
2007,
9:
3299
9e
Matsuzawa H.
Kanao K.
Miyake Y.
Nishibayashi Y.
Org. Lett.
2007,
9:
5561
10a
Yasuda M.
Somyo T.
Baba A.
Angew. Chem. Int. Ed.
2006,
45:
793
10b
Yadav JS.
Subba Reddy BV.
Raghavendra Rao KV.
Narayana Kumar GGKS.
Tetrahedron Lett.
2007,
48:
5573
10c
Jana U.
Maiti S.
Biswas S.
Tetrahedron Lett.
2007,
48:
7160
10d
Yadav JS.
Subba Reddy BV.
Raghavendra Rao KV.
Narayana Kunar GGKS.
Synthesis
2007,
3205
10e
Srihari P.
Bhunia DC.
Sreedhar P.
Mandal SS.
Shyam Sunder Reddy J.
Yadav JS.
Tetrahedron Lett.
2007,
48:
8120
11a
Shirakawa S.
Kobayashi S.
Org. Lett.
2007,
9:
311
11b
Motokura K.
Nakagiri N.
Mizugaki T.
Ebitani K.
Kaneda K.
J. Org. Chem.
2007,
72:
6006
11c
Le Bras J.
Muzart J.
Tetrahedron
2007,
63:
7942
12a While preparing this manuscript some works about this reaction using different Lewis acids as catalysts appeared (see ref. 10b-e). We have also reported a single example about the Brønsted acid catalyzed alkylation of indoles with propargylic alcohols: Sanz R.
Martínez A.
Álvarez-Gutiérrez JM.
Rodríguez F.
Eur. J. Org. Chem.
2006,
1383
12b Remarkably, in all these reactions only secondary propargylic alcohols are used.
13 The absence of examples where tertiary alcohols are used is probably due to their high tendency to undergo elimination processes under the acidic conditions. Only the alkylation of N-methylindole with 2-phenylpropan-2-ol has been reported. See ref. 10c and 11a.
See ref. 12 and also:
14a
Sanz R.
Martínez A.
Miguel D.
Álvarez-Gutiérrez JM.
Rodríguez F.
Adv. Synth. Catal.
2006,
348:
1841
14b
Sanz R.
Miguel D.
Martínez A.
Álvarez-Gutiérrez JM.
Rodríguez F.
Org. Lett.
2007,
9:
727
14c
Sanz R.
Miguel D.
Martínez A.
Álvarez-Gutiérrez JM.
Rodríguez F.
Org. Lett.
2007,
9:
2027
14d
Sanz R.
Martínez A.
Álvarez-Gutiérrez JM.
Rodríguez F.
Synthesis
2007,
3252
14e
Sanz R.
Martínez A.
Guilarte V.
Álvarez-Gutiérrez JM.
Rodríguez F.
Eur. J. Org. Chem.
2007,
4642
15 Alkynols 2 were synthesized by nucleophilic addition of the alkynylcerium reagents to the corresponding aryl alkyl ketones as previously described: Imamoto T.
Sugiura Y.
Takiyama N.
Tetrahedron Lett.
1984,
25:
4233
16
Typical Procedure for the Synthesis of 3-Alkylated Indole Derivatives 3, 5, and 7; Synthesis of 3-(1,3-Diphenylpent-1-yn-3-yl)-1-methyl-1
H
-indole (3aa; Table 2, Entry 1): To a mixture of alcohol 2a (0.567 g, 2.4 mmol) and N-methylindole (1a; 0.262 g, 2.0 mmol) in analytical grade MeCN (2 mL), PTSA (0.019 g, 0.1 mmol) was added. The reaction was stirred at r.t. for 2 h (the completion of the reaction was monitored by GC-MS and TLC). The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: hexane-Et2O, 10:1) to afford 3aa (0.545 g, 78%) as a white solid, which was recrystallized in hexane-Et2O (2:1); mp 124-126 ºC. 1H NMR (400 MHz, CDCl3): δ = 1.32 (t, J = 7.3 Hz, 3 H), 2.56 (dq, J = 7.2, 14.3 Hz, 1 H), 2.83 (dq, J = 7.2, 14.3 Hz, 1 H), 3.82 (s, 3 H), 7.16-7.24 (m, 2 H), 7.35-7.54 (m, 2 H), 7.66-7.74 (m, 2 H), 7.81 (d, J = 8.0 Hz, 1 H), 7.86 (d, J = 7.2 Hz, 2 H). 13C NMR (100.6 MHz, CDCl3): δ = 10.1 (Me), 32.7 (Me), 34.8 (CH2), 45.4 (C), 84.9 (C), 93.7 (C), 109.3 (CH), 118.8 (CH), 119.5 (C), 121.3 (CH), 121.6 (CH), 124.0 (C), 126.3 (C), 126.4 (CH), 126.5 (CH), 127.3 (2 × CH), 127.8 (CH), 128.1 (2 × CH), 128.3 (2 × CH), 131.7 (2 × CH), 137.7 (C), 144.6 (C). IR (KBr): 2962, 2930, 1488, 1463, 1326, 758, 741, 701 cm-1. LRMS (EI): m/z = 349 (9) [M+], 320 (100). HRMS: m/z calcd for C26H23N: 349.1830; found: 349.1836.
17 A dialkyl-substituted alkynol, such as 2-methyl-4-phenyl-3-butyn-2-ol, gave a low yield (28%) of the corresponding propargylated indole when reacted with 1a.
18 Alkynols 4 were prepared by addition of phenylethynyl-lithium to the corresponding 2-cycloalken-1-one at low temperature in THF.
19 Trace amounts of the corresponding product coming from a direct attack of the indole on the propargylic position were observed in the crude of the reactions when alcohols 4b and 4c were used.
20 Alcohols 6a and 6c are commercially available. Alcohol 6b was synthesized by addition of n-BuLi to acetophenone at low temperature in THF.