Subscribe to RSS
DOI: 10.1055/s-2008-1072593
Ruthenium-Catalyzed Isomerizations of Allylic and Propargylic Alcohols in Aqueous and Organic Media: Applications in Synthesis
Publication History
Publication Date:
16 April 2008 (online)
Abstract
Recent research work on ruthenium-catalyzed isomerizations of allylic and propargylic alcohols into carbonyl compounds is reviewed. Tandem processes based on these isomerization reactions are also included.
1 Introduction
2 Isomerizations of Allylic Alcohols
2.1 Redox Isomerization
2.2 The 1,3-Rearrangement
2.3 Tandem Processes
3 Isomerizations of Propargylic Alcohols
3.1 Meyer-Schuster and Rupe Rearrangements
3.2 Redox Isomerization
3.3 Tandem Processes
4 Conclusions and Outlook
Key words
ruthenium - isomerizations - alcohols - homogeneous catalysis - tandem reactions
-
1a
Trost BM. Science 1991, 254: 1471 -
1b
Trost BM. Angew. Chem. Int. Ed. Engl. 1995, 34: 259 -
1c
Trost BM. Acc. Chem. Res. 2002, 35: 695 -
1d
Trost BM.Fredericksen MU.Rudd MT. Angew. Chem. Int. Ed. 2005, 44: 6630 -
2a
Li C.-J. Chem. Rev. 1993, 93: 2023 -
2b
Lubineau A.Auge J.Queneau Y. Synthesis 1994, 741 -
2c
Li C.-J.Chan TH. Organic Reactions in Aqueous Media John Wiley & Sons; New York: 1997. -
2d
Lindström UM. Chem. Rev. 2002, 102: 2751 -
2e
Li C.-J. Chem. Rev. 2005, 105: 3095 -
2f
Andrade CKZ.Alves LM. Curr. Org. Chem. 2005, 9: 195 -
2g
Li C.-J.Chen L. Chem. Soc. Rev. 2006, 35: 68 -
2h
Herrerías CI.Yao X.Li Z.Li CJ. Chem. Rev. 2007, 107: 2546 -
2i
Organic Reactions in Water
Lindström UM. Blackwell; Oxford: 2007. -
2j
Li C.-J.Chan TH. Comprehensive Organic Reactions in Aqueous Media Wiley-VCH; Weinheim: 2007. -
3a
Bruneau C.Dixneuf PH. Chem. Commun. 1997, 507 -
3b
Naota T.Takaya H.Murahashi S.-I. Chem. Rev. 1998, 98: 2599 -
3c
Trost BM.Toste FD.Pinkerton AB. Chem. Rev. 2001, 101: 2067 -
3d
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
3e
Ritleng V.Sirlin C.Pfeffer M. Chem. Rev. 2002, 102: 1731 -
3f
Ruthenium in Organic Synthesis
Murahashi S.-I. Wiley-VCH; Weinheim: 2004. -
3g
Ruthenium Catalysts and Fine Chemistry
Bruneau C.Dixneuf PH. Springer; Berlin: 2004. - For a thematic issue devoted to this topic, see:
- 3h Curr. Org. Chem. 2006, 10: 113-225
-
3i
Bruneau C.Dixneuf PH. Angew. Chem. Int. Ed. 2006, 45: 2176 -
4a
Wang ML.Li C.-J. Top. Organomet. Chem. 2004, 11: 321 -
4b
Cadierno V.Crochet P. In Advances in Organometallic Chemistry ResearchYamamoto K. Nova Science; New York: 2007. p.37-65 -
5a
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; Oxford: 1998. -
5b
Anastas PT.Williamson TC. Green Chemistry: Frontiers in Benign Chemical Synthesis and Processes Oxford University Press; New York: 1998. -
5c
Matlack AS. Introduction to Green Chemistry Marcel Dekker; New York: 2001. -
5d
Lancaster M. In Handbook of Green Chemistry and TechnologyClark JH.Macquarrie DJ. Blackwell; Oxford: 2002. -
5e
Lancaster M. Green Chemistry: An Introductory Text Royal Society of Chemistry; Cambridge: 2002. 10-27 -
5f
Anastas PT.Kirchhoff MM. Acc. Chem. Res. 2002, 35: 686 -
5g
Sheldon RA.Arends I.Hanefeld U. Green Chemistry and Catalysis Wiley-VCH; Weinheim: 2007. - For reviews on the catalytic isomerization of allylic alcohols, see:
-
6a
van der Drift RC.Bouwman E.Drent E. J. Organomet. Chem. 2002, 650: 1 -
6b
Uma R.Crévisy C.Grée R. Chem. Rev. 2003, 103: 27 - Prior to our work, the hexaaquaruthenium(II) complex [Ru(H2O)6][OTs]2 (OTs = p-toluenesulfonate) had proven to be an active catalyst for the isomerization of allylic alcohols and ethers in pure aqueous solution, see:
-
7a
McGrath DV.Grubbs RH.Ziller JW. J. Am. Chem. Soc. 1991, 113: 3611 -
7b
Karlen T.Ludi A. Helv. Chim. Acta 1992, 75: 1604 -
7c
McGrath DV.Grubbs RH. Organometallics 1994, 13: 224 - In addition, the catalytic systems mer-[RuCl3(DMSO)(phen)] (DMSO = dimethyl sulfoxide, phen = 1,10-phenanthroline), cis,cis-[RuCl2(DMSO)2(phen)], and [Ru(acac)3]/phen/PTSA (acac = acetylacetonate, PTSA = p-toluenesulfonic acid) had also been used for the isomerization of allylic alcohols in monophasic water/organic solvent mixtures, see:
-
7d
van der Drift RC.Sprengers JW.Bouwman E.Mul WP.Kooijman H.Spek AL.Drent E. Eur. J. Inorg. Chem. 2002, 2147 -
7e
Stunnenberg F.Niele FGH.Drent E. Inorg. Chim. Acta 1994, 222: 225 -
8a
Cadierno V.Díez J.Gamasa MP.Gimeno J.Lastra E. Coord. Chem. Rev. 1999, 193-195: 147 -
8b
Cadierno V.Gamasa MP.Gimeno J. Eur. J. Inorg. Chem. 2001, 571 -
8c
Cadierno V.Gamasa MP.Gimeno J. Coord. Chem. Rev. 2004, 248: 1627 - For examples, see:
-
9a
Kalck P.Monteil F. Adv. Organomet. Chem. 1992, 34: 219 -
9b
Herrmann WA.Kohlpaintner CW. Angew. Chem. Int. Ed. Engl. 1993, 32: 1524 -
9c
Aqueous Organometallic Chemistry and Catalysis
Horváth IT.Joó F. Kluwer; Dodrecht: 1995. -
9d
Aqueous-Phase Organometallic Catalysis: Concepts and Applications
Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 1998. -
9e
Hanson BE. Coord. Chem. Rev. 1999, 185-186: 795 -
9f
Aqueous Organometallic Catalysis
Horváth IT.Joó F. Kluwer; Dodrecht: 2001. -
9g
Pinault N.Bruce DW. Coord. Chem. Rev. 2003, 241: 1 - Thematic issues of journals have been devoted to the catalytic applications of water-soluble organometallic compounds, see:
- 10a J. Mol. Catal. A: Chem. 1997, 116: 1-316
- 10b Catalysis Today 1998, 42: 371-478
- 10c Adv. Synth. Catal. 2002, 344: 219-451
- 11 A short account covering the synthesis and catalytic applications in water of platinum metals containing this ligand is available, see:
Pringle PG.Smith MB. Platinum Met. Rev. 1990, 34: 74 - 12
Cadierno V.Crochet P.García-Garrido SE.Gimeno J. Dalton Trans. 2004, 3635 - 13
Cadierno V.Crochet P.García-Garrido SE.Gimeno J. Curr. Org. Chem. 2006, 10: 165 - 14
Cadierno V.García-Garrido SE.Gimeno J. Chem. Commun. 2004, 232 - 15
Bäckvall J.-E.Andreasson U. Tetrahedron Lett. 1993, 34: 5459 - 16
Uma R.Davies MK.Crévisy C.Grée R. Eur. J. Org. Chem. 2001, 3141 - 17
Trost BM.Kulawiec RJ. J. Am. Chem. Soc. 1993, 115: 2027 -
18a
Trost BM.Kulawiec RJ. Tetrahedron Lett. 1991, 32: 3039 -
18b
van der Drift RC.Vailati M.Bouwman E.Drent E. J. Mol. Catal. A: Chem. 2000, 159: 163 - 19
Cadierno V.García-Garrido SE.Gimeno J.Varela-Álvarez A.Sordo JA. J. Am. Chem. Soc. 2006, 128: 1360 - TON values up to 3000 (TOF up to 36000 h-1) have been reported for the isomerization of prop-2-en-1-ol into propionaldehyde using the complexes [RuCp(PR3)(NCMe)2][PF6] (PR3 = PPh3, PCy3) as catalysts, see:
-
20a
Slugovc C.Rüba E.Schmid R.Kirchner K. Organometallics 1999, 18: 4230 - TON values up to 6000 have also been reported for the isomerization of but-3-en-2-ol into butan-2-one using complex 7 as the catalyst and AgOTs as a co-catalyst (a TOF value >200000 h-1 has been claimed):
-
20b
See ref. 18b TON values up to 17200 (TOF up to 18400 h-1) have been reported for the isomerization of oct-1-en-3-ol into octan-3-one using the heterogeneous catalytic system Ru(OH)x/Al2O3, see:
-
20c
Yamaguchi K.Koike T.Kotani M.Matsushita M.Shinachi S.Mizuno N. Chem. Eur. J. 2005, 11: 6574 - 21
Crochet P.Díez J.Fernández-Zúmel MA.Gimeno J. Adv. Synth. Catal. 2006, 348: 93 - 22 For example, see:
de Bellefon C.Caravieilhes S.Kuntz EG. C. R. Acad. Sci., Ser. IIc: Chim. 2000, 3: 607 - 23
Phillips AD.Gonsalvi L.Romerosa A.Vizza F.Peruzzini M. Coord. Chem. Rev. 2004, 248: 955 - 24
Díaz-Álvarez AE.Crochet P.Zablocka M.Duhayon C.Cadierno V.Gimeno J.Majoral JP. Adv. Synth. Catal. 2006, 348: 1671 -
25a
Csabai P.Joó F. Organometallics 2004, 23: 5640 -
25b
Fekete M.Joó F. Catal. Commun. 2006, 7: 783 -
25c
Campos-Malpartida T.Fekete M.Joó F.Kathó .Romerosa A.Saoud M.Wojtków W. J. Organomet. Chem. 2008, 693: 468 - 26
Crochet P.Fernández-Zúmel MA.Gimeno J.Scheele M. Organometallics 2006, 25: 4846 - 27
Ito M.Kitahara S.Ikariya T. J. Am. Chem. Soc. 2005, 127: 6172 - 28
Martín-Matute B.Bogár K.Edin M.Kaynak FB.Bäckvall J.-E. Chem. Eur. J. 2005, 11: 5832 - 29
Cherkaoui H.Soufiaoui M.Grée R. Tetrahedron 2001, 57: 2383 - Some other catalytic systems are also able to isomerize trisubstituted allylic alcohols, although they require higher temperatures (70-120 °C) and/or longer reaction times:
-
30a
See also ref. 16
-
30b
See also ref. 21
-
30c
Bricout H.Monflier E.Carpentier J.-F.Mortreux A. Eur. J. Inorg. Chem. 1998, 1739 -
30d
Doppiu A.Salzer A. Eur. J. Inorg. Chem. 2004, 2244 -
30e
Ganchegui B.Bouquillon S.Henin F.Muzart J. J. Mol. Catal. A: Chem. 2004, 214: 65 - 31 For example, see:
Morrill C.Beutner GL.Grubbs RH. J. Org. Chem. 2006, 71: 7813 ; and references cited therein -
32a
Li C.-J.Wang D.Chen D.-L. J. Am. Chem. Soc. 1995, 117: 12867 -
32b
Wang D.Chen D.Haberman JX.Li C.-J. Tetrahedron 1998, 54: 5129 - For example, see:
-
33a
Fogg DE.dos Santos EN. Coord. Chem. Rev. 2004, 248: 2365 -
33b
Bruneau C.Dérien S.Dixneuf PH. Top. Organomet. Chem. 2006, 19: 295 - 34
Cadierno V.Francos J.Gimeno J.Nebra N. Chem. Commun. 2007, 2536 -
35a
Uma R.Davies M.Crévisy C.Grée R. Tetrahedron Lett. 2001, 42: 3069 -
35b
Wang M.Li C.-J. Tetrahedron Lett. 2002, 43: 3589 -
35c
Wang M.Yang X.-F.Li C.-J. Eur. J. Org. Chem. 2003, 998 -
35d
Yang X.-F.Wang M.Varma RS.Li C.-J. Org. Lett. 2003, 5: 657 -
35e
Yang X.-F.Wang M.Varma RS.Li C.-J. J. Mol. Catal. A: Chem. 2004, 214: 147 -
35f
See also ref. 30d
- 36
Finnegan D.Seigal BA.Snapper ML. Org. Lett. 2006, 8: 2603 - 37
Meyer KH.Schuster K. Ber. Dtsch. Chem. Ges. 1922, 55: 819 -
38a
Rupe H.Glenz K. Justus Liebigs Ann. Chem. 1924, 436: 184 -
38b
Rupe H.Kambli E. Helv. Chim. Acta 1926, 9: 672 -
38c
Rupe H.Kambli E. Justus Liebigs Ann. Chem. 1927, 459: 195 - 39 For a review on the Meyer-Schuster and Rupe rearrangements, see:
Swaminathan S.Narayanan KV. Chem. Rev. 1971, 71: 429 - 40
Stark H.Sadek B.Krause M.Hüls A.Ligneau X.Ganellin CR.Arrang J.-M.Schwartz J.-C.Schunack W. J. Med. Chem. 2000, 43: 3987 - 41
Welch SC.Hagan CP.White DH.Fleming WP.Trotter JW. J. Am. Chem. Soc. 1977, 99: 549 - 42
Crich D.Natarajan S.Crich JZ. Tetrahedron 1997, 53: 7139 -
43a
Pindur U.Schall T. Liebigs Ann. Chem. 1993, 1099 -
43b
Weinmann H.Harre M.Neh H.Nickisch K.Skötsch C.Tilstam U. Org. Process Res. Dev. 2002, 6: 216 -
43c
Colombo D.Bombieri G.Lenna R.Marchini N.Modica E.Scala A. Steroids 2006, 71: 745 - 44
Stevens KE.Paquette LA. Tetrahedron Lett. 1981, 22: 4393 - 45
Takeda K.Nakane D.Takeda M. Org. Lett. 2000, 2: 1903 - For example, see:
-
46a
Olson GL.Morgan KD.Saucy G. Synthesis 1976, 25 -
46b
Chabardes P.Kuntz E.Varagnat J. Tetrahedron 1977, 33: 1775 -
46c
Choudary BM.Prasad AD.Valli VLK. Tetrahedron Lett. 1990, 31: 7521 -
46d
Narasaka K.Kusama H.Hayashi Y. Chem. Lett. 1991, 1413 -
46e
Erman MB.Gulyi SE.Aul’chenco I. S. Mendeleev Commun. 1994, 89 -
46f
Yamano Y.Tobe C.Ito M. J. Chem. Soc., Perkin Trans. 1 1995, 1895 -
46g
Lorber CY.Osborn JA. Tetrahedron Lett. 1996, 37: 853 - We note that gold-catalyzed isomerizations of internal alkynols operating under remarkably mild conditions (CH2Cl2, r.t.) have recently been described, see:
-
47a
Engel DA.Dudley GB. Org. Lett. 2006, 8: 4027 -
47b
Lee SI.Baek JY.Sim SH.Chung YK. Synthesis 2007, 2107 -
48a
Picquet M.Bruneau C.Dixneuf PH. Chem. Commun. 1997, 1201 -
48b
Picquet M.Fernández A.Bruneau C.Dixneuf PH. Eur. J. Org. Chem. 2000, 2361 - 49
Suzuki T.Tokunaga M.Wakatsuki Y. Tetrahedron Lett. 2002, 43: 7531 - For reviews on the chemistry of transition-metal-vinylidene and -allenylidene complexes, see:
-
50a
Bruce MI. Chem. Rev. 1991, 91: 197 -
50b
Bruce MI. Chem. Rev. 1998, 98: 2797 -
50c
Touchard D.Dixneuf PH. Coord. Chem. Rev. 1998, 178-180: 409 -
50d
Puerta MC.Valerga P. Coord. Chem. Rev. 1999, 193-195: 977 - For a special issue devoted to the chemistry of vinylidenes, allenylidenes, and related metallacumulenes, see:
- 50e Coord. Chem. Rev. 2004, 248: 1531-1715
-
51a
Cadierno V.Díez J.García-Garrido SE.Gimeno J. Chem. Commun. 2004, 2716 -
51b
Cadierno V.García-Garrido SE.Gimeno J. Adv. Synth. Catal. 2006, 348: 101 - 52
Bustelo E.Dixneuf PH. Adv. Synth. Catal. 2007, 349: 933 - 53
Ma D.Lu X. J. Chem. Soc., Chem. Commun. 1989, 890 - 54
Trost BM.Livingston RC. J. Am. Chem. Soc. 1995, 117: 9586 - 55 A related redox isomerization has been evoked in the rearrangement of but-2-yne-1,4-diol to give butyrolactone catalyzed by [RuH2(PPh3)4] via cyclization of the initially formed enal, see:
Shvo Y.Blum Y.Reshef D. J. Organomet. Chem. 1982, 238: C79 - 56
Nishibayashi Y.Uemura S. Curr. Org. Chem. 2006, 10: 135 ; and references cited therein - 57
Onodera G.Matsumoto H.Nishibayashi Y.Uemura S. Organometallics 2005, 24: 5799 - 58
Cadierno V.Díez J.García-Garrido SE.Gimeno J.Nebra N. Adv. Synth. Catal. 2006, 348: 2125 - 59
Tsuji Y.Yokoyama Y.Huh K.-T.Watanabe Y. Bull. Chem. Soc. Jpn. 1987, 60: 3456 - 60
Pridmore SJ.Slatford PA.Daniel A.Whittlesey MK.Williams JMJ. Tetrahedron Lett. 2007, 48: 5115 - 61
Pridmore SJ.Slatford PA.Williams JMJ. Tetrahedron Lett. 2007, 48: 5111