References and Notes
1 High-Pressure Organic Chemistry, Part 33. For Part 32, see: Kumamoto K.
Nakano K.
Ichikawa Y.
Kotsuki H.
Synlett
2006,
1968
Reviews:
2a
Perlmutter P.
Conjugate Addition Reactions in Organic Synthesis
Pergamon;
New York:
1992.
p.114
2b
Liu M.
Sibi MP.
Tetrahedron
2002,
58:
7991
2c
Vicario JL.
Badía D.
Carrillo L.
Org. Prep. Proced. Int.
2005,
37:
513
2d
Xu L.-W.
Xia C.-G.
Eur. J. Org. Chem.
2005,
633
3a
Um I.-H.
Lee E.-J.
Min J.-S.
Tetrahedron
2001,
57:
9585
3b
Wabnitz TC.
Yu J.-Q.
Spencer JB.
Chem. Eur. J.
2004,
10:
484
4a
Ahn KH.
Lee SJ.
Tetrahedron Lett.
1994,
35:
1875
4b
Sibi MP.
Shay JJ.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
1998,
120:
6615
4c
Sibi MP.
Liu M.
Org. Lett.
2000,
2:
3393
4d
Sibi MP.
Liu M.
Org. Lett.
2001,
3:
4181
4e
Azizi A.
Saidi MR.
Tetrahedron
2004,
60:
383
5a
Xu L.-W.
Li L.
Xia C.-G.
Zhou S.-L.
Li J.-W.
Hu X.-X.
Synlett
2003,
2337
5b
Chaudhuri MK.
Hussain S.
Kantam ML.
Neelima B.
Tetrahedron Lett.
2005,
46:
8329
6
Gandelman M.
Jacobsen EN.
Angew. Chem. Int. Ed.
2005,
44:
2393
7a
Falborg L.
Jørgensen KA.
J. Chem. Soc., Perkin Trans. 1
1996,
2823
7b
Sugihara H.
Daikai K.
Jin XL.
Furuno H.
Inanaga J.
Tetrahedron Lett.
2002,
43:
2735
7c
Kawatsura M.
Aburatani S.
Uenishi J.
Tetrahedron
2007,
63:
4172
8a
Pérez M.
Pleixats R.
Tetrahedron
1995,
51:
8355
8b
Xu L.-W.
Xia C.-G.
Hu XX.
Chem. Commun.
2003,
2570
8c
Xu L.-W.
Li L.
Xia C.-G.
Helv. Chim. Acta
2004,
87:
1522
9a
Zhuang W.
Hazell RG.
Jørgensen KA.
Chem. Commun.
2001,
1240
9b
Cardillo G.
Gentilucci L.
Gianotti M.
Kim H.
Perciaccante R.
Tolomelli A.
Tetrahedron: Asymmetry
2001,
12:
2395
9c
Wabnitz TC.
Spencer JB.
Tetrahedron Lett.
2002,
43:
3891
9d
Xu L.-W.
Li J.-W.
Xia C.-G.
Zhou S.-L.
Hu X.-X.
Synlett
2003,
2425
9e
Kantam ML.
Neeraja V.
Kavita B.
Neelima B.
Chaudhuri MK.
Hussain S.
Adv. Synth. Catal.
2005,
347:
763
9f
Munro-Leighton C.
Blue ED.
Gunnoe TB.
J. Am. Chem. Soc.
2006,
128:
1446
9g
Reddy KR.
Kumar NS.
Synlett
2006,
2246
10 See ref. 4d and: Nakama K.
Seki S.
Kanemasa S.
Tetrahedron Lett.
2002,
43:
829
11
Yamagiwa N.
Qin H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
13419
12a
Firouzabadi H.
Iranpoor N.
Jafarpour M.
Ghaderi A.
J. Mol. Catal. A: Chem.
2006,
252:
150
12b
Hashemi MM.
Eftekhari-Sis B.
Abdollahifar A.
Khalili B.
Tetrahedron
2006,
62:
672
13a
Gaunt MJ.
Spencer JB.
Org. Lett.
2001,
3:
25
13b
Kawatsura M.
Hartwig JF.
Organometallics
2001,
20:
1960
13c
Takasu K.
Nishida N.
Ihara M.
Synlett
2004,
1844
13d
Xu L.-W.
Xia C.-G.
Synthesis
2004,
2191
13e
Zhang H.
Zhang Y.
Liu L.
Xu H.
Wang Y.
Synthesis
2005,
2129
13f
Phua PH.
Mathew SP.
White AJP.
de Vries JG.
Blackmond DG.
Hii KK.
Chem. Eur. J.
2007,
13:
4602
14a
Loh T.-P.
Wei L.-L.
Synlett
1998,
975
14b
Kantam ML.
Roy M.
Roy S.
Subhas MS.
Sreedhar B.
Choudary BM.
Lal De R.
J. Mol. Catal. A: Chem.
2007,
265:
244
15a
Matsubara S.
Yoshioka M.
Utimoto K.
Chem. Lett.
1994,
23:
827
15b
Jenner G.
Tetrahedron Lett.
1995,
36:
233
15c
Bartoli G.
Bosco M.
Marcantoni E.
Petrini M.
Sambri L.
Torregiani E.
J. Org. Chem.
2001,
66:
9052
15d
Saha B.
Das D.
Banerji B.
Iqbal J.
Tetrahedron Lett.
2002,
43:
6467
15e
Bartoli G.
Bartolacci M.
Giuliani A.
Marcantoni E.
Massaccesi M.
Torregiani E.
J. Org. Chem.
2005,
70:
169
15f
Reboule I.
Gil R.
Collin J.
Tetrahedron Lett.
2005,
46:
7761
15g
Varala R.
Sreelatha N.
Adapa SR.
Synlett
2006,
1549
16
Kobayashi S.
Kakumoto K.
Sugiura M.
Org. Lett.
2002,
4:
1319
17a
Varala R.
Alam MM.
Adapa SR.
Synlett
2003,
720
17b
Srivastava N.
Banik BK.
J. Org. Chem.
2003,
68:
2109
18a
Martín-Aranda RM.
Vicente-Rodríguez MA.
López-Pestana JM.
López-Peinado AJ.
Jerez A.
López-González J.
Banares-Munoz MA.
J. Mol. Catal. A: Chem.
1997,
124:
115
18b
Shaikh NS.
Deshpande VH.
Bedekar AV.
Tetrahedron
2001,
57:
9045
18c
Basu B.
Das P.
Hossain I.
Synlett
2004,
2630
18d
Raje VP.
Bhat RP.
Samant SD.
Tetrahedron Lett.
2005,
46:
835
18e
Zahouily M.
Bahlaouan W.
Bahlaouan B.
Rayadh A.
Sebti S.
ARKIVOC
2005,
(xiii):
150
18f
Kantam ML.
Neelima B.
Reddy ChV.
J. Mol. Catal. A: Chem.
2005,
241:
147
19a
Ménand M.
Dalla V.
Synlett
2005,
95
19b
Yang L.
Xu L.-W.
Xia C.-G.
Tetrahedron Lett.
2005,
46:
3279
20a
Xu L.-W.
Xia C.-G.
Tetrahedron Lett.
2004,
45:
4507
20b
Khalafi-Nezhad A.
Zarea A.
Soltani Rad MN.
Mokhtari B.
Parhami A.
Synthesis
2005,
419
20c
Qu G.-R.
Zhang Z.-G.
Geng M.-W.
Xia R.
Zhao L.
Guo H.-M.
Synlett
2007,
721
20d
Yeom C.-E.
Kim MJ.
Kim BM.
Tetrahedron
2007,
63:
904
20e
Han X.
Tetrahedron Lett.
2007,
48:
2845
20f
Liu BK.
Wu Q.
Qian XQ.
Lv DS.
Lin XF.
Synthesis
2007,
2653
21a
Chen YK.
Yoshida M.
MacMillan DWC.
J. Am. Chem. Soc.
2006,
128:
9328
21b
Dinér P.
Nielsen M.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2007,
46:
1983
21c
Wang J.
Zu L.
Li H.
Xie H.
Wang W.
Synthesis
2007,
2576
22a
Goumri-Magnet S.
Guerret O.
Gornitzka H.
Cazaux JB.
Bigg D.
Palacios F.
Bertrand G.
J. Org. Chem.
1999,
64:
3741
22b
Fetterly BM.
Jana NK.
Verkade JG.
Tetrahedron
2006,
62:
440
22c
Raje VP.
Bhat RP.
Samant SD.
Synlett
2006,
2676
23
Yao S.-P.
Lu D.-S.
Wu Q.
Cai Y.
Xu S.-H.
Lin X.-F.
Chem. Commun.
2004,
2006 ; and references cited therein
24a
Moghaddam FM.
Mohammadi M.
Hosseinnia A.
Synth. Commun.
2000,
30:
643
24b
Yadav JS.
Reddy BVS.
Basak AK.
Narsaiah AV.
Chem. Lett.
2003,
32:
988
24c
Xu L.-W.
Li J.-W.
Zhou S.-L.
Xia C.-G.
New J. Chem.
2004,
28:
183
24d
Firouzabadi H.
Iranpoor N.
Jafari AA.
Adv. Synth. Catal.
2005,
347:
655
24e
Jakubec P.
Berkes D.
Kolarovic A.
Povazanec F.
Synthesis
2006,
4032
24f
Surendra K.
Krishnaveni NS.
Sridhar R.
Rama Rao K.
Tetrahedron Lett.
2006,
47:
2125
24g
Yang L.
Xu L.-W.
Zhou W.
Li L.
Xia C.-G.
Tetrahedron Lett.
2006,
47:
7723
24h
Amore KM.
Leadbeater NE.
Miller TA.
Schmink JR.
Tetrahedron Lett.
2006,
47:
8583
24i
Ranu BC.
Banerjee S.
Tetrahedron Lett.
2007,
48:
141
24j
Moran J.
Dornan P.
Beauchemin AM.
Org. Lett.
2007,
9:
3893
24k
Polshettiwar V.
Varma RS.
Tetrahedron Lett.
2007,
48:
8735
24l
de Castries A.
Escande A.
Fensterbank H.
Magnier E.
Marrot J.
Larpent C.
Tetrahedron
2007,
63:
10330
25
Organic Reactions in Water: Principles, Strategies and Applications
Lindstroem UM.
Blackwell Publishing;
Oxford:
2007.
There is some controversy regarding organic reactions in or on water, see:
26a
Brogan AP.
Dickerson TJ.
Janda KD.
Angew. Chem. Int. Ed.
2006,
45:
8100
26b
Hayashi Y.
Angew. Chem. Int. Ed.
2006,
45:
8103
26c
Blackmond DG.
Armstrong A.
Coombe V.
Wells A.
Angew. Chem. Int. Ed.
2007,
46:
3798
27 Review: Kotsuki H.
Kumamoto K.
Yuki Gosei Kagaku Kyokaishi
2005,
63:
770
For the example of high-pressure-promoted aza-Michael reactions in water, see:
28a
Jenner G.
J Phys. Org. Chem.
1999,
12:
619
See also:
28b Ref. 15b.
28c
Rulev AY.
Yenil N.
Pesquet A.
Oulyadi H.
Maddaluno J.
Tetrahedron
2006,
62:
5411
29
General Procedure
A mixture of N-heterocycle (1, 1.1 mmol) and enone (2, 1.0 mmol) in distilled H2O (ca. 3.0 mL) was placed in a Teflon reaction vessel, and the mixture was allowed to react at 0.6 GPa and 60 °C for 20 h. After the mixture was cooled and the pressure was released, the mixture was extracted with CH2Cl2. The extracts were dried, concentrated, and purified by silica gel column chromatography (elution with CH2Cl2-i-PrOH) to afford the pure adduct 3.
30 Acetalization of ketones under weakly acidic conditions (1a, pK
a = 14.75 in DMSO) in the absence of any dehydrating agents is quite unique, and we are currently performing experiments to explore the general scope of this reaction. See also: Kumamoto K.
Ichikawa Y.
Kotsuki H.
Synlett
2005,
2254
31 All new compounds gave satisfactory analytical and spectral data.
32 The higher reactivity of purine (1g) at the N9 position is well established. For example, see ref. 6.
Compound 3q: mp 123-125 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1698, 1595, 1576, 1496, 1413 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.85 (1 H, dddd, J = 14.0, 12.0, 5.4, 3.6 Hz), 2.16-2.23 (1 H, m), 2.32-2.39 (1 H, m), 2.48-2.62 (3 H, m), 2.95 (1 H, ddt, J = 14.1, 4.9, 1.7 Hz), 3.26 (1 H, dd, J = 14.1, 11.7 Hz), 4.89 (1 H, tt, J = 11.5, 4.2 Hz), 8.13 (1 H, s), 8.98 (1 H, s), 9.17 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 22.0, 30.7, 40.5, 46.9, 54.4, 134.6, 143.2, 149.1, 150.9, 152.4, 206.3.
Compound 3r: mp 143-144 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1708, 1606, 1559, 1488, 1412 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.83-1.96 (1 H, m), 2.17-2.26 (1 H, m), 2.37 (1 H, ddt, J = 14.6, 11.2, 3.6 Hz), 2.45-2.57 (2 H, m), 2.58-2.66 (1 H, m), 2.96 (1 H, ddd, J = 14.2, 11.0, 1.0 Hz), 3.03 (1 H, ddt, J = 14.2, 5.1, 1.7 Hz), 4.79 (1 H, ddt, J = 10.9, 5.1, 3.9 Hz), 8.33 (1 H, s), 9.04 (1 H, s), 9.18 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 21.9, 31.3, 40.4, 47.6, 55.7, 124.4, 140.0, 145.5, 153.7, 161.0, 205.3.
33 Compound 3d: mp 69-70 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1685, 1596, 1521, 1448 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.60 (2 H, t, J = 6.4 Hz), 4.65 (2 H, t, J = 6.4 Hz), 7.47 (2 H, m), 7.59 (1 H, tt, J = 7.3, 1.2 Hz), 7.91-7.95 (3 H, m), 8.23 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.9, 44.0, 128.0 (2×), 128.7 (2×), 133.7, 136.0, 144.0, 152.0, 196.5.
Compound 3e: mp 87-89 °C (hexane-CH2Cl2). FT-IR (KBr): ν = 1687, 1538 cm-1. 1H NMR (400 MHz, CDCl3):
δ = 3.50 (2 H, t, J = 6.1 Hz), 4.55 (2 H, t, J = 6.1 Hz), 7.50 (2 H, t, J = 7.8 Hz), 7.62 (1 H, m), 7.93 (2 H, m), 8.34 (2 H, s). 13C NMR (100 MHz, CDCl3): δ = 39.2, 39.7, 128.0 (2×), 128.9 (2×), 134.2, 135.6, 143.2 (2×), 195.8.
For recent examples of imidazole-catalyzed Morita-Baylis-Hillman reactions, see:
34a
Luo S.
Zhang B.
He J.
Janczuk A.
Wang PG.
Cheng J.-P.
Tetrahedron Lett.
2002,
43:
7369
34b
Gatri R.
El Gaïed MM.
Tetrahedron Lett.
2002,
43:
7835
34c
Luo S.
Wang PG.
Cheng JP.
J. Org. Chem.
2004,
69:
555
34d
Luo S.
Mi X.
Wang PG.
Cheng J.-P.
Tetrahedron Lett.
2004,
45:
5171
34e
Davies HJ.
Ruda AM.
Tomkinson NCO.
Tetrahedron Lett.
2007,
48:
1461
34f See also: Ramachary DB.
Mondal R.
Tetrahedron Lett.
2006,
47:
7689
35 α,β-Unsaturated esters were found to be mostly unreactive as Michael acceptors under the standard conditions (in H2O, 0.6 GPa, 60 °C, 20 h), except for methyl acrylate (87% conversion yield).