References and Notes
-
For some representative references, see:
-
1a
McCarthy M.
Guiry PJ.
Tetrahedron
2001,
57:
3809
-
1b
Noyori R.
Takaya H.
Acc. Chem. Res.
1990,
23:
345
-
1c
Hubbard BK.
Walsh CT.
Angew. Chem. Int. Ed.
2003,
42:
730
-
For some representative reviews, see
-
2a
Bringmann G.
Mortimer AJP.
Keller PA.
Gresser MJ.
Garner J.
Breuning M.
Angew. Chem. Int. Ed.
2005,
44:
5384
-
2b
Lutomski KA.
Meyers AI.
Asymmetric Synthesis via Chiral Oxazolines, In Asymmetric Synthesis
Vol. 3:
Morrison JD.
Academic Press;
New York:
1984.
p.213
-
2c
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
-
2d
Bringmann G.
Menche D.
Acc. Chem. Res.
2001,
34:
615
-
2e
Lloyd-Williams P.
Giralt E.
Chem. Soc. Rev.
2001,
30:
145
-
2f
Walace TW.
Org. Biomol. Chem.
2006,
4:
3197
-
3a
Uemura M.
Kamikawa K.
J. Chem. Soc., Chem. Commun.
1994,
2697
-
3b
Kamikawa K.
Watanabe T.
Uemura M.
J. Org. Chem.
1996,
61:
1375
-
3c
Kamikawa K.
Uemura M.
Synlett
2000,
938
-
3d
Kamikawa K.
Watanabe T.
Daimon A.
Uemura M.
Tetrahedron
2000,
56:
2325
-
3e
Watanabe T.
Tanaka Y.
Shoda R.
Sakamoto R.
Kamikawa K.
Uemura M.
J. Org. Chem.
2004,
69:
4152
-
For some representative references, see:
-
4a
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
-
4b
Jiménez-Núñez E.
Escavarren AM.
Chem. Commun.
2007,
333
-
4c
Buzas AK.
Istrate FM.
Gagosz F.
Angew. Chem. Int. Ed.
2007,
46:
1141
-
4d
Kirsch SF.
Binder JT.
Crone B.
Duschek A.
Haug TT.
Liébert C.
Menz H.
Angew. Chem. Int. Ed.
2007,
46:
2310
-
4e
Fürstner A.
Davies PW.
Angew. Chem. Int. Ed.
2007,
46:
3410
-
4f
Stephen AS.
Hashmi ASK.
Hutchings GJ.
Angew. Chem. Int. Ed.
2006,
45:
7896
-
4g
Toullec PY.
Genin E.
Leseurre L.
Genet J.-P.
Michelet V.
Angew. Chem. Int. Ed.
2006,
45:
7427
-
4h
Ma S.
Yu S.
Gu Z.
Angew. Chem. Int. Ed.
2006,
45:
200
-
4i
Fürstner A.
Davies PW.
Angew. Chem. Int. Ed.
2006,
45:
200
-
4j
Nieto-Oberhuber C.
López S.
Jiménez-Núñez E.
Echavarren AM.
Chem. Eur. J.
2006,
12:
5916
-
4k
Ma S.
Yu S.
Gu Z.
Angew. Chem. Int. Ed.
2006,
45:
200
-
4l
Sun J.
Conley MP.
Zhang L.
Kozmin SA.
J. Am. Chem. Soc.
2006,
128:
9705
-
4m
Sherry BD.
Maus L.
Laforteza BN.
Toste FD.
J. Am. Chem. Soc.
2006,
128:
8132
-
4n
Wang S.
Zhang L.
J. Am. Chem. Soc.
2006,
128:
14274
-
4o
Zhang L.
Sun J.
Kozmin SA.
Adv. Synth. Catal.
2006,
348:
2271
-
4p
Nieto-Oberhuber C.
López S.
Echavarren AM.
J. Am. Chem. Soc.
2005,
127:
6178
-
5a
Fürstner A.
Mamane V.
J. Org. Chem.
2002,
67:
6264
-
5b
Kennedy JWJ.
Fürstner A.
Chem. Eur. J.
2006,
12:
7398
-
5c
Shibata T.
Ueno Y.
Kanda K.
Synlett
2006,
411
-
5d
Dankwardt JW.
Tetrahedron Lett.
2001,
42:
5809
-
5e
Lin M.-Y.
Das A.
Liu R.-S.
J. Am. Chem. Soc.
2006,
128:
9340
- 6 Reaction conditions: (i) trimethylsilylacetylene, (Ph3P)2PdCl2, CuI, Et3N, THF; (ii) NaOH, H2O, MeOH; (iii) (2-iodophenyl)-1-methylpropene-1, Pd(PPh3)4, CuI, Et3N. See: Müller TJJ.
Lindner HJ.
Chem. Ber.
1996,
129:
607
-
The precursor o-alkynyl bromobenzene derivatives were prepared by literature procedure. See:
-
7a
Bleckmann W.
Hanack M.
Chem. Ber.
1984,
117:
3021
-
7b
Just G.
Singh R.
Tetrahedron Lett.
1987,
28:
5981
-
7c
Huynk C.
Linstrumelle G.
Tetrahedron
1988,
44:
6337
- 8 Au(PPh3)NTf2 was prepared by literature method, see: Mézailles N.
Ricard L.
Gagosz F.
Org. Lett.
2005,
7:
4133
-
The starting arene-chromium complexes can be easily obtained in an optically active form by optical resolution or diastereoselective ortho lithiation, see:
-
11a
Davies SG.
Goodfellow CL.
J. Chem. Soc., Perkin Trans. 1
1990,
393
-
11b
Han JW.
Son SK.
Chung YK.
J. Org. Chem.
1997,
62:
8264
-
11c
Watanabe T.
Shakadou M.
Uemura M.
Inorg. Chim. Acta
1999,
296:
80
-
11d
Uemura M.
Org. React.
2006,
67:
217 ; and see ref. 1b
-
The peri proton (at C-8′ position) of the anti-biaryl-chromium complex 7b appeared at δ = 7.67 ppm. The corresponding proton of stereoisomeric syn-biaryl-chromium complex is shifted to lower field due to an anisotropic effect of the tricarbonylchromium fragment. See:
-
12a
Uemura M.
Nishimura H.
Kamikawa K.
Shiro M.
Inorg. Chim. Acta
1994,
222:
63
-
12b
Bringmann G.
Göbel L.
Peters K.
Peters E.-M.
Schnering HG.
Inorg. Chim. Acta
1994,
222:
255
9 The stereochemistry at spiro quaternary carbon was assigned by reaction path; the double bond attack from exo side to the tricarbonylchromium fragment.
10
Typical Experimental Procedure
A mixture of chromium complex 1g (50 mg, 0.12 mmol), (PPh3)AuNTf2 (4.5 mg) in CH2Cl2 (5 mL) was heated at 40 °C for 5 h under argon. After filtration through Celite and evaporation under vacuum, the residue was purified by SiO2 chromatography (Et2O-hexane, 1:5) to give 48 mg (98%) of 2g; mp 209 °C (dec). 1H NMR (300 MHz, CDCl3): δ = 1.92 (3 H, s), 2.18 (3 H, s), 2.66 (3 H, s), 4.83 (1 H, d, J = 6.3Hz), 5.00 (1 H, d, J = 6.3Hz), 5.72 (1 H, t, J = 6.3Hz), 7.44-7.57 (2 H, m), 7.88 (1 H, s), 7.94 (1 H, d, J = 7.8 Hz), 8.04 (1 H, d, J = 7.8Hz). 13C NMR (75 MHz, CDCl3): δ = 15.27, 17.05, 19.64, 56.01, 70.67, 85.08, 95.06, 107.42, 113.45, 123.82, 125.18, 126.46, 129.22, 130.87, 131.84, 132.04, 132.07, 132.10, 132.80, 143.40, 233.78. IR (CHCl3): 1961, 1880
cm-1. Anal. Calcd for C23H20O4Cr: C, 66.98; H, 4.89. Found: C, 66.89; H, 4.97. The obtained chromium complex was exposed to sunlight in Et2O at 0 °C to give chromium-free biaryl compound in a quantitative yield.