RSS-Feed abonnieren
DOI: 10.1055/s-2008-1072730
Dess-Martin Periodinane Promoted Oxidative Coupling of Baylis-Hillman Adducts with Silyl Enol Ethers: A Novel Synthesis of cis-Fused Dihydropyrans
Publikationsverlauf
Publikationsdatum:
16. April 2008 (online)

Abstract
Baylis-Hillman adducts undergo smooth oxidative Mukaiyama-Michael addition and a subsequent cyclization with silyl enol ethers in the presence of Dess-Martin periodinane (DMP) and pyridine under mild reaction conditions to afford a new class of dihydropyran derivatives in good yields with high diastereoselectivity. This is the first report on the preparation of cis-fused dihydropyrans from Baylis-Hillman adducts and silyl enol ethers.
Key words
Baylis-Hillman adducts - hypervalent iodine - enol ethers - oxidative Mukaiyama-Michael addition
-
1a
Faulkner DJ. Nat. Prod. Rep. 2000, 17: 7 -
1b
Roush WR.Dilley GJ. Synlett 2001, 955 -
1c
Norcross RD.Paterson I. Chem. Rev. 1995, 95: 2041 -
1d
Paterson I.De Savi C.Tudge M. Org. Lett. 2001, 3: 3149 -
2a
Jørgensen KA. Angew. Chem. Int. Ed. 2000, 112: 3702 -
2b
Johnson JS.Evans DA. Acc. Chem. Res. 2000, 33: 325 -
2c
Jørgensen KA.Johannsen M.Yao S.Audrain H.Thorhauge J. Acc. Chem. Res. 1999, 32: 605 -
2d
Gademann DE.Chavez DE.Jacobsen EN. Angew. Chem. Int. Ed. 2002, 112: 3702 - 3
Baylis AB, andHillman MED. inventors; DE 2155113. ; Chem. Abstr. 1972, 77, 34174q -
4a
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
4b
Basavaiah D.Dharma Rao P.Suguna Hyma R. Tetrahedron 1996, 52: 8001 -
4c
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 -
5a
Lee KY.Kim JM.Kim JN. Tetrahedron Lett. 2003, 44: 6737 -
5b
Lee KY.Kim JM.Kim JN. Tetrahedron 2003, 59: 385 -
5c
Im YJ.Lee KY.Kim TH.Kim JN. Tetrahedron Lett. 2002, 43: 4675 -
5d
Kim JN.Kim JM.Lee KY. Synlett 2003, 821 -
5e
Kim JN.Kim HS.Gong JH.Chung YM. Tetrahedron Lett. 2001, 42: 8341 -
6a
Drewes SE.Emslie ND. J. Chem. Soc., Perkin Trans. 1 1982, 2079 -
6b
Hoffmann HMR.Rabe J. Helv. Chim. Acta 1984, 67: 413 -
6c
Hoffmann HMR.Rabe J. J. Org. Chem. 1985, 50: 3849 -
7a
Hoffmann HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1985, 24: 94 -
7b
Buchholz R.Hoffmann HMR. Helv. Chim. Acta 1991, 74: 1213 -
7c
Ameer F.Drewes SE.Hoole RFA.Kaye PT.Pitchford AT. J. Chem. Soc., Perkin Trans. 1 1985, 2713 -
8a
Varvoglis A. Hypervalent Iodine in Organic Synthesis Academic Press; San Diego: 1997. p.256 -
8b
Wirth T.Hirt UH. Synthesis 1999, 1271 -
8c
Wirth T. Angew. Chem. Int. Ed. 2001, 40: 2812 -
9a
Dess DB.Martin JC. J. Org. Chem. 1983, 48: 4155 -
9b
Dess DB.Martin JC. J. Am. Chem. Soc. 1991, 113: 7277 -
10a
Nicolaou KC.Baran PS.Zong Y.-L.Sugita K. J. Am. Chem. Soc. 2002, 124: 2212 -
10b
Nicolaou KC.Mathison CJN. Angew. Chem. Int. Ed. 2005, 44: 5992 -
10c
Chaudhari SS. Synlett 2000, 278 -
10d
Ladziata U.Zhdankin VV. ARKIVOC 2006, (ix): 26 -
10e
Lawrence JN.Crump JP.McGown AT.Hadfield JA. Tetrahedron Lett. 2001, 42: 3939 - 12
Horiguchi Y.Sano T.Tsuda Y. Chem. Pharm. Bull. 1996, 44: 670
References and Notes
General Experimental Procedure
A mixture of Baylis-Hillman adduct (1 mmol), DMP (1.2 mmol), and pyridine (1.5 mmol) in anhyd CH2Cl2 (10 mL) was stirred at r.t. until complete oxidation took place. To this, trimethylsilyl enol ether (1.5 mmol) was added and stirred until complete addition (as indicated by TLC) took place. The reaction mixture was diluted with H2O (50 mL) and extracted with Et2O (3 × 15 mL). The combined ether layer was washed with sat. aq NaHCO3 soln (1 × 15 mL), brine (1 × 10 mL), dried over Na2SO4, and evaporated. The crude product was purified by silica gel column chromatography using a gradient mixture of hexane-EtOAc (9:1) as eluent to afford pure substituted dihydropyran derivatives.
Spectral Data of Selected Compounds
Compound 3a (Table
[1]
): colorless liquid. IR (KBr): νmax = 2954, 2838, 1738, 1454, 1234, 1207, 1153, 1017, 781 cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.0 (s, 9 H), 1.20-1.58 (m, 8 H), 1.61-1.76 (m, 1 H), 2.06 (dd, 1 H, J = 1.4, 16.4 Hz), 2.56 (dd, 1 H, J = 5.8, 16.8 Hz), 3.32 (s, 3 H), 7.14-7.18 (m, 5 H). ESI-MS: m/z = 361 [M + 1], 383 [M + Na]. HRMS:
m/z calcd for C20H28O4NaSi: 383.1654; found: 383.1641.
Compound 3b (Table
[1]
): 1H NMR (600 MHz, CDCl3): δ = 7.33 (m, 5 H, Ph), 3.92 (q, 2 H, J = 7.2 Hz, OCH2), 2.72 (dd, 1 H, J = 16.7, 6.2 Hz, H6), 2.23 (dd, 1 H, J = 16.7, 2.0 Hz, H6′), 2.12 (dt, 1 H, J = 13.0, ca. 3.6 Hz, H1e), 1.85 (dddd, 1 H, J = 10.5, 6.2, 4.2, 2.0 Hz, H5a), 1.65 (m, 1 H, H3e), 1.62 (m, 1 H, H2e), 1.57 (m, 1 H, H4e), 1.55 (dt, 1 H, J = 3.8, ca. 12.8 Hz, H1a), 1.44 (tq, 1 H, J = ca. 3.5, ca. 12.6 Hz, H2a), 1.34 (dq, 1 H, J = 3.2, ca. 12.3 Hz, H4a), 1.28 (m, 1 H, H3a). 0.91 (t, J = 7.2 Hz, 1 H, CH3), 0.15 (s, 9 H, 3 × CH3).
Compound 3f (Table
[1]
): colorless liquid. IR (KBr): νmax = 3029, 2948, 2865, 1718, 1495, 1265, 1217, 1137, 1037, 854 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.0 (s, 9 H), 1.80 (ddd, 1 H, J = 1.8, 5.6, 13.4 Hz), 2.21 (ddd, 1 H, J = 3.5, 5.4, 13.4 Hz), 2.52 (ddd, 1 H, J = 3.5, 5.6, 16.9 Hz), 2.66 (ddd, 1 H, J = 5.4, 11.3, 16.8 Hz), 3.59 (s, 3 H), 7.07-7.13 (m, 5 H), 7.22 (td, 1 H, J = 1.1, 7.9 Hz), 7.3-7.43 (m, 6 H), 7.50 (dd, 2 H, J = 1.5, 7.7 Hz). HRMS: m/z calcd for C28H31O5Si: 475.1940; found: 475.1954.
Compound 3h (Table
[1]
): colorless liquid. IR (KBr): νmax = 2928, 2857, 1715, 1504, 1433, 1151, 1039, 754 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.0 (s, 9 H), 0.78 (t, 3 H, J = 6.8 Hz), 1.10-1.27 (m, 6 H), 1.33-1.72 (m, 6 H), 1.86-2.02 (m, 1 H), 2.07 (dd, 1 H, J = 6.0, 12.0 Hz), 2.16 (dd, 1 H, J = 6.0, 12.0 Hz), 3.55 (s, 3 H).
Compound 4 (Scheme
[2]
): colorless liquid. IR (KBr): νmax = 2920, 2851, 1739, 1683, 1506, 1443, 1226, 1157, 1019, 755 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.20-2.39 (m, 2 H), 2.94-3.19 (m, 2 H), 3.61 (s, 3 H), 4.67 (dd, 1 H, J = 6.0, 7.5 Hz), 7.33-7.52 (m, 5 H), 7.87 (d, 2 H, J = 7.5 Hz), 7.99 (d, 2 H, J = 9.0 Hz). ESI-MS: m/z = 345 [M + 1], 367 [M + Na]. HRMS: m/z calcd for C19H17O4NaCl: 367.0713; found: 367.0715.