RSS-Feed abonnieren
DOI: 10.1055/s-2008-1072753
Regiocontrolled Addition of Carbonyl Compounds with Allylic Indium Generated by Hydroindation of 1,3-Dienes
Publikationsverlauf
Publikationsdatum:
07. Mai 2008 (online)
Abstract
Allylic indiums, generated by a conjugate hydroindation of 1,3-dienes by HInCl2, reacted with carbonyl compounds in a one-pot treatment. Both γ- and α-adducts can be obtained depending upon the conditions used.
Key words
allylation - hydrides - indium - ketones - regioselectivity
-
1a
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
1b
Roush WR. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. Chap. 1.1. p.1 -
2a
Thomas EJ. Chem. Commun. 1997, 411 -
2b
Marshall JA. Chem. Rev. 1996, 96: 31 -
2c
Nishigaichi Y.Takuwa A. Tetrahedron 1993, 49: 7395 -
3a
Brown HC.Liotta R.Kramer GW. J. Org. Chem. 1978, 43: 1058 -
3b
Collins S.Dean WP.Ward DG. Organometallics 1988, 7: 2289 -
3c
Kira M.Hino T.Sakurai H. Tetrahedron Lett. 1989, 30: 1099 -
3d
Satoh M.Nomoto Y.Miyaura N.Suzuki A. Tetrahedron Lett. 1989, 30: 3789 -
3e
Kobayashi S.Nishio K. Synthesis 1994, 457 -
3f
Masuyama Y.Tsunoda M.Kurusu Y. J. Chem. Soc., Chem. Commun. 1994, 1451 -
3g
Gao Y.Urabe H.Sato F. J. Org. Chem. 1994, 59: 5521 -
3h
Kobayashi S.Nishio K. J. Org. Chem. 1994, 59: 6620 -
3i
Sell MS.Klein WR.Rieke RD. J. Org. Chem. 1995, 60: 1077 -
3j
Takai K.Matsukawa N.Takahashi A.Fujii T. Angew. Chem. Int. Ed. 1998, 37: 152 -
3k
Takai K.Toratsu C. J. Org. Chem. 1998, 63: 6450 -
3l
Bareille L.Gendre PL.Moise C. Chem. Commun. 2005, 775 -
3m The generation of allylic indium from diene by Ni catalyst was reported, see:
Hirashita T.Kambe S.Tsuji H.Araki S. Chem. Commun. 2006, 2595 - 4
Hayashi N.Honda H.Yasuda M.Shibata I.Baba A. Org. Lett. 2006, 8: 4553 -
5a
Cintas P. Synlett 1995, 1087 -
5b
Marshall JA. Chemtracts: Org. Chem. 1997, 10: 481 -
5c
Li C.-J.Chan T.-H. Tetrahedron 1999, 55: 11149 -
5d
Araki S.Hirashita T. In Main Group Metals in Organic Synthesis Vol. 1:Yamamoto H.Oshima K. Wiley-VCH; Weinheim: 2004. p.323-386 - α-Selective allylations:
-
6a
Yanagisawa A.Habaue S.Yamamoto H. J. Am. Chem. Soc. 1991, 113: 8955 -
6b
Yanagisawa A.Ogasawara K.Yasue K.Yamamoto H. Chem. Commun. 1996, 367 -
6c
Yanagisawa A.Habaue S.Yasue K.Yamamoto H. J. Am. Chem. Soc. 1994, 116: 6130 -
6d
Ito A.Kishida M.Kurusu Y.Masuyama Y. J. Org. Chem. 2000, 65: 494 -
6e
Yamamoto Y.Maruyama K. J. Org. Chem. 1983, 48: 1565 -
6f
Yamamoto Y.Saito Y.Maruyama K. J. Org. Chem. 1983, 48: 5408 -
6g
Kanagawa Y.Nishiyama Y.Ishii Y. J. Org. Chem. 1992, 57: 6988 -
6h
Keck GE.Abbott DE.Boden EP.Enholm EJ. Tetrahedron Lett. 1984, 25: 3927 -
6i
Ganis P.Marton D.Peruzzo V.Tagliavini G. J. Organomet. Chem. 1982, 231: 307 -
6j
Benkeser RA.Siklosi MP.Mozdzen EC. J. Am. Chem. Soc. 1978, 100: 2134 - α-Selective allylations by allylic indiums:
-
7a
Miyabe H.Yamaoka Y.Naito T.Takemoto Y. J. Org. Chem. 2003, 68: 6745 -
7b
Isaac MB.Chan TH. Tetrahedron Lett. 1995, 36: 8957 -
7c
Hirashita T.Hayashi Y.Mitsui K.Araki S. J. Org. Chem. 2003, 68: 1309 -
7d
Tan KT.Chng SS.Cheng HS.Loh TP. J. Am. Chem. Soc. 2003, 125: 2958 -
7e
Loh TP.Tan KT.Yang JY.Xiang CL. Tetrahedron Lett. 2001, 42: 8701 -
7f
Loh TP.Tan KT.Hu QY. Tetrahedron Lett. 2001, 42: 8705 -
7g
Araki S.Ito H.Katsumura N.Butsugan Y. J. Organomet. Chem. 1989, 369: 291 - We and other groups have developed the generation and synthetic use of dihaloindium hydrides (HInX2). See:
-
8a
Baba A.Shibata I. Chem. Rec. 2005, 5: 323 -
8b
Inoue K.Sawada A.Shibata I.Baba A. Tetrahedron Lett. 2001, 42: 4661 -
8c
Inoue K.Sawada A.Shibata I.Baba A. J. Am. Chem. Soc. 2002, 124: 906 -
8d
Hayashi N.Shibata I.Baba A. Org. Lett. 2004, 6: 4981 -
8e
Hayashi N.Shibata I.Baba A. Org. Lett. 2005, 7: 3093 -
8f
Takami K.Yorimitsu H.Oshima K. Org. Lett. 2002, 4: 2993 -
8g
Miura K.Tomita M.Yamada Y.Hosomi A. J. Org. Chem. 2007, 72: 787
References and Notes
Typical Procedure
A 10 mL round-bottom flask charged with InCl3 (2.0 mmol) was dried by heating to 110 °C under reduced pressure (1 mmHg) for 1 h. After the nitrogen was filled, THF (2 mL) was added to dissolve InCl3. To the mixture was added Bu3SnH (2.0 mmol) at -78 °C. The mixture was then stirred for 10 min to prepare dichloroindium hydride (HInCl2). After the solution was warmed up to r.t., 2,3-dimethyl-1,3-butadiene (1a, 4.0 mmol) was added and the resulting mixture was stirred for 5 h. Then benzil (2b, 1.0 mmol) was added and stirred for 14 h. The resulting mixture was quenched by aq 1 N HCl (5 mL) and extracted with Et2O
(3 × 10 mL). The combined organic layer was treated with aq NH4F and then the precipitate was filtered to remove the tin compound. The filtrate was extracted with Et2O and dried over MgSO4. Concentration followed by silica gel column chromatography eluting with hexane-EtOAc (90:10) afforded 4ab as a solid.
Analytical and Spectroscopic Data of Selected Compounds
Compound 3ab: mp 65-66 °C. IR (KBr): 3494 (OH), 1685 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.67-7.59 (m, 4 H), 7.37-7.23 (m, 6 H), 5.12 (s, 1 H), 5.02 (s, 1 H), 3.52 (s, 1 H), 1.56 (s, 3 H), 1.46 (s, 3 H), 1.23 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.43, 151.81, 138.62, 138.42, 131.38, 129.46, 127.79, 127.62, 127.56, 127.15, 115.61, 83.54, 49.37, 24.49, 24.15, 22.85. MS (CI): m/z = 295 (70) [M+ + 1], 278 (22), 277 (100), 212 (20), 211 (86), 105(34). HRMS (CI, +0.9 mmu): m/z calcd for C20H23O2: 295.1698; found: 295.1707 [M+ + 1].
Compound 4ab: mp 88-89 °C. IR (KBr): 3498 (OH), 1670 (C=O) cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.89-7.79 (m, 2 H), 7.63-7.53 (m, 2 H), 7.43-7.25 (m, 6 H), 3.63 (s, 1 H), 3.40 (d, J = 13.8 Hz, 1 H), 2.96 (d, J = 13.8 Hz, 1 H), 1.66 (s, 3 H), 1.61 (s, 3 H), 1.39 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 201.39, 143.14, 135.29, 132.61, 132.35, 130.32, 128.69, 127.89, 127.54, 125.11, 122.84, 81.80, 44.66, 21.22, 21.02, 19.74. MS (CI): m/z = 295 (67) [M+ + 1], 278 (22), 277 (100). HRMS (CI, +0.5 mmu): m/z calcd for C20H23O2: 295.1698; found: 295.1703 [M+ + 1].
Compound 4ac: IR (neat): 3514 (OH), 1732 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 8.0 Hz, 2 H), 7.35 (dd, J = 8.0, 7.5 Hz, 2 H), 7.29 (d, J = 7.5 Hz, 1 H), 3.74 (s, 3 H), 3.50 (s, 1 H), 3.10 (d, J = 13.8 Hz, 1 H), 2.87 (d, J = 13.8 Hz, 1 H), 1.68 (s, 6 H), 1.60 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 175.59, 142.20, 131.19, 128.08, 127.58, 125.64, 122.15, 78.00, 52.91, 44.71, 21.11, 21.00, 19.48. MS (EI, 70 eV): m/z = 248 (1) [M+], 105 (100), 84 (39), 77 (23). HRMS (EI, +0.2 mmu): m/z calcd for C15H20O3: 248.1412; found: 248.1414 [M+].
Compound 4ad: IR (neat): 3564 (OH) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, J = 8.0 Hz, 2 H), 7.31 (dd, J = 8.0, 7.2 Hz, 2 H), 7.23 (t, J = 7.2 Hz, 1 H), 3.67 (d, J = 9.3 Hz, 1 H), 3.57 (d, J = 9.3 Hz, 1 H), 3.37 (s, 3 H), 2.78 (s, 1 H), 2.75 (d, J = 13.8 Hz, 1 H), 2.47 (d, J = 13.8 Hz, 1 H), 1.61 (s, 3 H), 1.53 (s, 3 H), 1.41 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.12, 129.66, 127.85, 126.61, 125.33, 123.35, 79.10, 76.51, 59.35, 44.15, 20.92, 20.78, 20.41. MS (CI): m/z = 235 (1) [M+ + 1], 217 (100), 151 (32). HRMS (CI, -0.2 mmu): m/z calcd for C15H23O2: 235.1698; found: 235.1696 [M+ + 1].
Although we tried the reaction of simple acetophenone (2e) with diene 1a in the presence of equimolar amount of Lewis basic additives such as Ph3P and HMPA, only a small amount of α-adduct 4ae was obtained at r.t. So we think that intramolecular coordination is more important than intermolecular coordination by ligand.