References and Notes
Reviews on polyquinanes:
1a
Mehta G.
Srikrishna A.
Chem. Rev.
1997,
97:
671
1b
Fu X.
Cook JM.
Aldrichimica Acta
1992,
25:
43
1c
Paquette LA.
Top. Curr. Chem.
1984,
119:
1
1d
Ramaiah M.
Synthesis
1984,
529
1e
Trost BM.
Chem. Soc. Rev.
1982,
11:
141
1f
Paquette LA.
Top. Curr. Chem.
1979,
79:
41
1g For neorogiolane, see: Srikrishna A.
Gowri V.
Tetrahedron: Asymmetry
2007,
18:
1663
1h For tetramic acid lactams, see: Capon RJ.
Skene C.
Lacey E.
Gill JH.
Wadsworth D.
Friedel T.
J. Nat. Prod.
1999,
62:
1256
For cylindramide, see:
2a
Cramer N.
Buchweitz M.
Laschat S.
Frey W.
Baro A.
Mathieu D.
Richter C.
Schwalbe H.
Chem. Eur. J.
2006,
12:
2488
2b
Cramer N.
Laschat S.
Baro A.
Schwalbe H.
Richter C.
Angew. Chem. Int. Ed.
2005,
44:
820 ; Angew. Chem. 2005, 117, 831
2c
Kanazawa S.
Fusetani N.
Matsunaga S.
Tetrahedron Lett.
1993,
34:
1065
Some selected examples:
3a
Harrington-Frost NM.
Pattenden G.
Tetrahedron Lett.
2000,
41:
403
3b
Jasperse CP.
Curran DP.
Fevig TL.
Chem. Rev.
1991,
91:
1237
3c
Seo J.
Fain H.
Blanc J.-B.
Montgomery J.
J. Org. Chem.
1999,
64:
6060
3d
Saitoh F.
Mori M.
Okamura K.
Date T.
Tetrahedron
1995,
51:
4439
3e
Piers E.
Orellana A.
Synthesis
2001,
2138
3f
Laschat S.
Becheanu A.
Bell T.
Baro A.
Synlett
2005,
2547
3g
Anderl T.
Emo M.
Laschat S.
Baro A.
Frey W.
Synthesis
2008, 1619
Reviews:
4a
Vicario JL.
Badia D.
Carrillo L.
Synthesis
2007,
2065
4b
Christoffers J.
Koripelly G.
Rosiak A.
Rössle M.
Synthesis
2007,
1279
4c
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
4d
Lopez F.
Feringa BL. In Asymmetric Synthesis
Christmann M.
Bräse S.
Wiley-VCH;
Weinheim:
2007.
p.78-83
4e
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
4f
Guo H.-C.
Ma J.-A.
Angew. Chem. Int. Ed.
2006,
45:
354 ; Angew. Chem. 2006, 118, 362
4g
Alexakis A. In Transition Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
p.553-562
4h
Hayashi T.
Yamasaki K.
Chem. Rev.
2003,
103:
2829
4i
Dilman AD.
Ioffe SL.
Chem. Rev.
2003,
103:
733
4j
Alexakis A.
Benhaim C.
Eur. J. Org. Chem.
2002,
3221
4k
Feringa BL.
Naasz R.
Imbos R.
Arnold LA. In Modern Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
p.224-258
4l
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8033
4m
Feringa BL.
Acc. Chem. Res.
2000,
33:
346
5
Majetich G.
Casares A.
Chapman D.
Behnke M.
J. Org. Chem.
1986,
51:
1745
6a
Jacques T.
Marko IE.
Pospisil J. In Multicomponent Reactions
Zhu J.
Bienayme H.
Wiley-VCH;
Weinheim:
2005.
p.398-452
6b
Hosomi A.
Miura K.
Bull. Chem. Soc. Jpn.
2004,
77:
835
6c
Bianchini C.
Glendenning L.
Chemtracts: Inorg. Chem.
1995,
7:
107
6d
Schinzer D.
Synthesis
1988,
263
6e
Hosomi A.
Shirahata A.
Sakurai H.
Tetrahedron Lett.
1978,
3043
6f
Hosomi A.
Sakurai H.
J. Am. Chem. Soc.
1977,
99:
1673
6g
Hosomi A.
Sakurai H.
Tetrahedron Lett.
1976,
1295
7 For cyclic enones and acyclic enoates, see also: Kuhnert N.
Peverley J.
Robertson J.
Tetrahedron Lett.
1998,
39:
3215
Selected examples:
8a
Rossiter BE.
Swingle NM.
Chem. Rev.
1992,
92:
771
8b
Hutchinson DK.
Fuchs PL.
Tetrahedron Lett.
1986,
27:
1429
8c
House HO.
Fischer WF.
J. Org. Chem.
1969,
34:
3615
9a
Hon Y.-S.
Chen F.-L.
Huang Y.-P.
Lu T.-J.
Tetrahedron: Asymmetry
1991,
2:
879
9b
Scolastico C.
Pure Appl. Chem.
1988,
60:
1689
9c
Bernardi A.
Cardani S.
Pilati T.
Poli G.
Scolastico C.
Villa R.
J. Org. Chem.
1988,
53:
1600
9d
Bernardi A.
Cardani S.
Poli G.
Scolastico C.
J. Org. Chem.
1986,
51:
5041
10
Ito H.
Nagahara T.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
994 ; Angew. Chem. 2004, 116, 1012
11a
Ooi T.
Kondo Y.
Maruoka K.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1183 ; Angew. Chem. 1997, 109, 1231
11b
Ooi T.
Miura T.
Kondo Y.
Maruoka K.
Tetrahedron Lett.
1997,
38:
3947
11c
Maruoka K.
Imoto H.
Saito S.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
4131
12
Brown JB.
Henbest HB.
Jones ERH.
J. Chem. Soc.
1950,
3634
13
Banwell MG.
Corbett M.
Gulbis J.
Mackay MF.
Reum ME.
J. Chem. Soc., Perkin Trans. 1
1993,
945
14
Naya A.
Sagara Y.
Ohwaki K.
Saeki T.
Ichikawa D.
Iwasawa Y.
Noguchi K.
Ohtake N.
J. Med. Chem.
2001,
44:
1429
15
Yang F.
Newsome JJ.
Curran DP.
J. Am. Chem. Soc.
2006,
128:
14200
16
Wright SW.
Hageman DL.
Wright AS.
McClure LD.
Tetrahedron Lett.
1997,
38:
7345
17
Collon S.
Kouklovsky C.
Langlois Y.
Eur. J. Org. Chem.
2002,
3566
18 The initial 1,2-adduct, an enone, is capable of further 1,2-addition, giving the tertiary alcohol.5
19
General Procedures for the Allylation According Method B
In a Schlenk flask 4 Å MS (2.00 g) and TBAF (1.31 g, 0.50 mmol) were dried under high vacuum for 30 min. Under N2 atmosphere DMF (15 mL) was added, the mixture stirred for 30 min, transferred via cannula in a Schlenk flask with 4 Å MS (2.00 g), and stirred for a further 30 min. A solution of the respective ester (1 mmol) in DMF (5 mL) was added followed by HMPA (1.04 mL, 1.07 g, 6.00 mmol) and a solution of trimethylallylsilane (0.95 mL, 685 mg, 6.00 mmol) in DMF (5 mL) at 0 °C. After stirring at 0 °C for 10 min, 1 N HCl in MeOH (5 mL) and H2O (40 mL) were successively added, and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined organic layers were dried (MgSO4), concentrated under vacuum, and the crude product was chromatographed on SiO2 with hexanes-EtOAc.
Benzyl 2-Allylcyclohexanecarboxylate (15b)
R
f
= 0.37 (hexanes-EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 0.89-0.98 (m, 1.5 H, CH2), 1.14-2.03 (m, 13.5 H, Ha-1′, Ha*-1′, H-2, H*-2, H-3, H*-3, H-4, H*-4, H-5, H*-5, H-6, H*-6), 2.06-2.16 (m, 2.5 H, Hb-1′, Hb*-1′, H-1), 2.65 (dt, J = 8.1, 4.1 Hz, 0.5 H, H*-1) 4.90-4.98 (m, 2 H, H-3′), 5.06-5.15 (m, 3 H, ArCH
2, ArCH
2*), 5.65-5.76 (m, 1.5 H, H-2′, H*-2′), 7.29-7.38 (m, 7.5 H, Ar, Ar*) ppm. 13C NMR (125 MHz, CDCl3): δ = 22.6*, 23.8*, 25.4, 25.4*, 25.6, 28.0*, 30.1, 30.8 (C-3, C-4, C-5, C-6), 37.2*, 38.7 (C-2), 34.9*, 39.3 (C-1′), 44.8*, 49.4 (C-1), 65.8*, 65.9 (ArCH2), 115.9*, 116.3 (C-3′), 128.09*, 128.1, 128.1*, 128.2, 128.5, 128.5* (Ar), 136.0, 136.1* (Ar), 136.3, 137.3* (C-2′), 174.6*, 175.9 (CO) ppm. (* denotes minor diastereomer). FT-IR (ATR): 2319 (s), 2856 (s), 2360 (s), 1732 (vs), 1259 (s), 1164 (s), 749 (vs) cm-1. MS (ESI): m/z (%) = 241 (15) [M+ - O], 223 (36), 131 (28), 117 (20), 91 (71) [C7H7
+]. HRMS (ESI): m/z calcd for C17H22NaO2 [M + Na]: 281.1512; found: 281.1503.
Benzyl (3a′
R
,4′
R
,5′
R
,6a′
S
)-4′-Allylhexahydro-2′
H
-spiro[1,3-dioxolane-2,1′-pentalene]-5′-carboxylate (4)
R
f
= 0.58 (hexanes-EtOAc, 6:1); [α]D
20 +23 (c 1.00, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 1.45 (ddd, J = 12.6, 7.3, 2.7 Hz, 1 H, Ha-2′), 1.66-1.71 (m, 1 H, Ha-3′), 1.74-1.87 (m, 2 H, Ha-6, Hb-2′), 1.89-1.98 (m, 2 H, H-4′, Hb-3′), 2.04 (ddd, J = 12.9, 8.6, 6.3 Hz, 1 H, Hb-6′), 2.10-2.27 (m, 3 H, H-1′′, H-3a′), 2.35-2.44 (m, 2 H, H-5′, H-6a′), 3.79-3.98 (m, 4 H, OCH2CH2O), 5.09 (d, J = 5.3 Hz, 2 H, CH
2Ph), 4.92 (ddt, J = 10.0, 2.1, 1.0 Hz, 1 H, Ha-3′′), 4.98 (ddt, J = 17.1, 2.1, 1.4 Hz, 1 H, Hb-3′′), 5.73 (ddt, J = 17.1, 10.0, 7.2 Hz, 1 H, H-2′′), 7.28-7.38 (m, 5 H, Ph) ppm. 13C NMR (125 MHz, CDCl3): δ = 27.8 (C-2′), 32.9, 33.1 (C-6′, C-3′), 37.8 (C-1′′), 46.7 (C-3a′), 48.9, 51.1 (C-5′, C-6a′), 50.4 (C-4′), 63.8, 64.8 (OCH2CH2O), 66.1 (CH2Ph), 116.3 (C-3′′), 118.2 (C-1′), 127.6, 128.1, 128.2 (Ph), 136.1 (CH2
Ph), 136.4 (C-2′′), 174.6 (CO) ppm. FT-IR (ATR): 2946 (w), 2880 (w), 2362 (w), 2342 (w), 1455 (w), 1338 (w), 1152 (s), 1023 (s), 697 (s) cm-1. GC-MS (EI): m/z (%) = 342 (2) [M+], 301 (8) [M+ - C3H5], 251 (6) [M+ - C7H7], 223 (6), 207 (14) [M+ - CO2CH2C6H5], 107 (10) [C7H7O+], 99 (100), 91 (30) [C7H7
+]. HRMS (ESI): m/z calcd for C21H26O4Νa [M + Na]: 365.1723; found: 365.1722.
20
General Procedures for the Allylation According Method C
Trimethyl aluminium (1.10 mL, 1 M in hexane, 1.10 mmol) was slowly added to a solution of 2,6-diphenylphenol (813 mg, 3.30 mmol) in toluene (6 mL) in a Schlenk flask, and the mixture stirred at r.t. for 30 min. Then a solution of the respective ester (1.00 mmol) in toluene (3 mL) was added. After 5 min, the mixture was cooled to -78 °C and stirred for 1 h. In a further flask n-BuLi (0.88 mL, 1.6 M in hexane, 1.40 mmol) was slowly added to a solution of allyltributyltin (0.43 mL, 463 mg, 1.40 mmol) in THF (4 mL) at -78 °C, and after stirring for 45 min, this allyllithium solution was transferred via cannula to the solution of the ATPH complex, and the reaction mixture stirred at -78 °C for a further 45 min. The reaction was quenched with MeOH (10 mL) and 1 N HCl (5 mL), and the aqueous layer extracted with Et2O (50 mL). The organic layer was separated, dried (MgSO4), concentrated, and the crude product chromatographed on SiO2 with hexanes-EtOAc (50:1).
tert
-Butyl 2-Allylcyclopentanecarboxylate (11a)
R
f
= 0.74 (hexanes-EtOAc, 10:1). 1H NMR (300 MHz, CDCl3): δ = 1.21-1.27 (m, 1 H, Ha-3), 1.44 [s, 9 H, C(CH3)3], 1.45 [s, 4.5 H, C(CH3)3*], 1.49-1.54 (m, 1 H, Ha*-4, Ha*-3), 1.58-1.69 (m, 2 H, H-4), 1.70-2.00 (m, 5.5 H, Hb-3, H-5, Ha*-1′, Hb*-3, Hb*-4, H*-5), 2.02-2.09 (m, 1 H, Ha-1′), 2.09-2.18 (m, 1.5 H, H-2, H*-2), 2.19-2.29 (m, 2.5 H, H-1, Hb-1′, Hb*-1′), 2.78 (ddd, J = 7.8, 7.8, 5.6 Hz, 0.5 H, H*-1), 4.95-5.05 (m, 3 H, H-3′, H*-3′), 5.75-5.86 (m, 1.5 H, H-2′, H*-2′) ppm. 13C NMR (75 MHz, CDCl3): δ = 23.5*, 24.6 (C-4), 28.1, 28.2* [C(CH3)3], 28.3*, 30.2 (C-5), 30.7*, 32.1 (C-3), 35.4*, 39.3 (C-1′), 43.3*, 43.7 (C-2), 48.4*, 50.7 (C-1), 79.8, 80.0* [C(CH3)3], 115.3*, 115.6 (C-3′), 137.3, 137.9* (C-2′), 174.8*, 175.8 (CO) ppm. (* denotes minor diastereomer). FT-IR (ATR): 1723 (s), 1365 (s), 1256 (s), 1144 (vs) cm-1. GC-MS (EI): m/z (%) = 210 (1) [M+], 154 (60) [M+ - C(CH3)], 137 (28) [M+ - OCMe3], 109 (56)
[M+ - CO2CMe3], 67 (32), 57 (100) [C4H9
+]. HRMS (ESI): m/z calcd for C13H22NaO2 [M + Na]: 233.1512; found: 233.1510.
tert
-Butyl 2-Allylcycloheptanecarboxylate (16a)
R
f
= 0.68 (hexanes-EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 1.25-1.34 (m, 1 H, Ha-3), 1.37-1.51 (m, 3 H, Ha-4, CH2), 1.46 [s, 9 H, C(CH3)3], 1.53-1.75 (m, 6 H, Hb-3, Hb-4, H-7, CH2), 1.89-1.99 (m, 2 H, Ha-1′, H-2), 2.00-2.22 (m, 2 H, H-1, Hb-1′), 4.96-5.04 (m, 2 H, H-3′), 5.72-5.81 (m, 1 H, H-2′) ppm. 13C NMR (125 MHz, CDCl3): δ = 26.1, 26.2, 26.3*, 26.5* (C-5, C-6), 28.1, 28.2* [C(CH3)3], 28.3*, 29.3 (C-4), 28.6*, 30.3 (C-7), 30.7, 30.7* (C-3), 37.7*, 40.6 (C-1′), 40.2*, 40.5 (C-2), 48.2*, 51.8 (C-1), 79.7, 79.8* [C(CH3)3], 115.7*, 116.3 (C-3′), 137.1, 138.0* (C-2′), 175.1*, 176.4 (CO) ppm. FT-IR (ATR): 2923 (s), 1723 (vs), 1366 (s), 1142 (vs), 910 (s) cm-1. GC-MS (EI): m/z (%) = 238 (4) [M+], 181 (100) [M+ - CMe3], 165 (24) [M+ - OCMe3], 140 (14), 136 (16) [M+ - CO2CMe3], 122 (10), 109 (20), 95 (56), 81 (24), 67 (12), 57 (90) [C4H9
+], 41 (24) [C3H5
+], 29 (10). HRMS (ESI): m/z calcd for C15H27O2 [M + H]: 239.2006; found: 239.2017.
1-{(3a′
R
,6a′
S
)-3′,3a′6′,6a′-tetrahydro-2′
H
-spiro[1,3-dioxolane-2,1′-pentalen]-5′-yl}but-3-en-1-one (20)
R
f
= 0.38 (hexanes-EtOAc, 6:1). 1H NMR (500 MHz, CDCl3): δ = 1.54-1.72 (m, 3 H, Ha-3′, H-2), 1.98 (dddd, J = 12.1, 10.7, 9.1, 6.5 Hz, 1 H, Hb-3′), 2.59-2.68 (m, 2 H, Ha-6′, H-6a′), 2.76 (dddd, J = 12.6, 2.9, 1.9, 1.9 Hz, 1 H, Hb-6′), 3.44 (dddd, J = 6.7, 2.2, 1.4, 1.4 Hz, 2 H, CH
2CH=CH2), 3.44-3.51 (m, 1 H, H-3a′), 3.85-3.95 (m, 4 H, OCH2CH2O), 5.09-5.20 (m, 2 H, CH2CH=CH
2), 5.96 (ddt, J = 17.2, 10.3, 6.7 Hz, 1 H, CH2CH=CH2), 6.52 (dddd, J = 3.7, 1.9, 1.9, 0.9 Hz, 1 H, H-4′) ppm. 13C NMR (125 MHz, CDCl3): δ = 27.7 (C-3′), 32.9 (C-6′), 33.4 (C-2′), 44.2 (CH2CH=CH2), 46.3 (C-6a′), 49.6 (C-3a′), 63.9, 64.9 (OCH2CH2O), 118.2 (CH2
CH=CH2), 127.7 (C-1′), 131.4 (CH=), 143.6 (C-5′), 145.3 (C-4′), 197.6 (CO) ppm. FT-IR (ATR): 2952 (s), 2875 (s), 1665 (vs), 1617 (s), 1202 (s), 1105 (vs), 1028 (vs), 993 (s), 914 (s), 735 (s) cm-1. MS (ESI): m/z (%) = 257 (100)
[M + Na], 235 (6) [M + H], 211 (8), 193 (16) [M+ - C3H5], 173 (8), 149 (76) [C11H17
+], 131 (8), 121 (8) [C9H13
+], 105 (16), 99 (8). HRMS (ESI): m/z calcd for C14H19O3 [M + H]: 235.1329; found: 235.1320.
21
tert
-Butyl 2-(2-Hydroxyethyl)cyclopentane-carboxylate (13)
Ozone was passed through a solution of 11a (70 mg, 0.33 mmol) in MeOH-CH2Cl2-pyridine (4:4:1) at -78 °C. Then N2 was passed for 1 min, NaBH4 (33 mg, 0.84 mmol) was added, and the reaction mixture warmed to 0 °C and stirred for 3 h. After quenching with a sat. NH4Cl soln (5 mL), the reaction mixture was extracted with EtOAc (20 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO4), and concentrated under vacuum. The residue was chromatographed on SiO2 with hexanes-EtOAc (3:1, R
f
= 0.34) to give 13 as a colorless oil (52 mg, 74%, dr 67:33). 1H NMR (500 MHz, CDCl3): δ = 1.18-1.28 (m, 1 H, Ha-3), 1.45 [s, 13.5 H, C(CH3)3, C(CH3)3*], 1.52-1.96 (m, 11 H, H-1′, H*-1′, Hb-3, H*-3, H-4, H*-4, H-5, H*-5), 2.11-2.25 (m, 1.5 H, H-2, H-2*), 2.29 (dt, J = 8.8, 7.8 Hz, 1 H, H-1), 2.76 (dt, J = 7.8, 4.6 Hz, 0.5 H, H*-1), 3.60-3.76 (m, 3 H, H-2′, H*-2′) ppm. 13C NMR (125 MHz, CDCl3): δ = 23.6*, 24.8 (C-4), 28.1, 28.2* [C(CH3)3], 28.5*, 30.6 (C-5), 31.2*, 33.3 (C-3), 34.1*, 38.4 (C-1′), 40.2, 40.6* (C-2), 48.4, 50.9 (C-1), 61.6, 62.2 (C-2′), 80.2*, 80.3 [C(CH3)3], 175.1*, 175.5 (CO) ppm. FT-IR (ATR): 2935 (s), 2871 (s), 1722 (vs), 1366 (s), 1145 (vs), 1051 (s), 847 (s) cm-1. GC-MS (EI): m/z (%) = 184 (1), 158 (18) [M+ - C(CH3)], 141 (44) [M+ - OCMe3], 129 (12), 112 (8) [M+ - CO2CMe3], 95 (50), 67 (16), 57 (100) [C4H9
+], 41 (18) [C3H5
+]. HRMS (ESI):
m/z calcd for C12H22NaO3 [M + Na]: 237.1461; found: 237.1453.
22
Tsunoi S.
Ryu I.
Okuda T.
Tanaka M.
Komatsu M.
Sonoda N.
J. Am. Chem. Soc.
1998,
120:
8692
23 Compound 19 was obtained from enantiomerically pure pentalene-1,4-dione monoacetal1b via α-acylation, reduction of the carbonyl group, and subsequent dehydration following the method by Burgess.24
24
Burgess EM.
Penton HR.
Taylor EA.
J. Org. Chem.
1973,
38:
26