Subscribe to RSS
DOI: 10.1055/s-2008-1077825
Conjugate Allylation of Cyclic α,β-Unsaturated Esters
Publication History
Publication Date:
11 June 2008 (online)
Abstract
The conjugate allylation of a homologous series of α,β-unsaturated cyclic esters 8-10 by addition of diallylcuprate (method A), fluoride ion catalyzed addition of trimethylallylsilane (method B), and aluminium tris(2,6-diphenylphenoxide) (ATPH)-mediated addition of allyllithium (method C) was investigated. Method A was not selective in all cases. For methods B and C an influence of ester moiety and ring size on the regioselectivity was observed. Methyl cyclopentenoate 8c gave mainly the 1,2/1,2-product regardless the allylation method while tert-butyl and benzyl ester moieties favored the 1,4-products. For larger rings 9, 10 and the anellated system 19 methods B and C behave complementary depending on the ester function: Method B gave best results of 1,4-addition products for benzyl esters while method C worked better for tert-butyl esters.
Key words
conjugate allylation - cycloalkenecarboxylates - regioselectivity - pentalene
- Reviews on polyquinanes:
-
1a
Mehta G.Srikrishna A. Chem. Rev. 1997, 97: 671 -
1b
Fu X.Cook JM. Aldrichimica Acta 1992, 25: 43 -
1c
Paquette LA. Top. Curr. Chem. 1984, 119: 1 -
1d
Ramaiah M. Synthesis 1984, 529 -
1e
Trost BM. Chem. Soc. Rev. 1982, 11: 141 -
1f
Paquette LA. Top. Curr. Chem. 1979, 79: 41 -
1g For neorogiolane, see:
Srikrishna A.Gowri V. Tetrahedron: Asymmetry 2007, 18: 1663 -
1h For tetramic acid lactams, see:
Capon RJ.Skene C.Lacey E.Gill JH.Wadsworth D.Friedel T. J. Nat. Prod. 1999, 62: 1256 - For cylindramide, see:
-
2a
Cramer N.Buchweitz M.Laschat S.Frey W.Baro A.Mathieu D.Richter C.Schwalbe H. Chem. Eur. J. 2006, 12: 2488 -
2b
Cramer N.Laschat S.Baro A.Schwalbe H.Richter C. Angew. Chem. Int. Ed. 2005, 44: 820 ; Angew. Chem. 2005, 117, 831 -
2c
Kanazawa S.Fusetani N.Matsunaga S. Tetrahedron Lett. 1993, 34: 1065 - Some selected examples:
-
3a
Harrington-Frost NM.Pattenden G. Tetrahedron Lett. 2000, 41: 403 -
3b
Jasperse CP.Curran DP.Fevig TL. Chem. Rev. 1991, 91: 1237 -
3c
Seo J.Fain H.Blanc J.-B.Montgomery J. J. Org. Chem. 1999, 64: 6060 -
3d
Saitoh F.Mori M.Okamura K.Date T. Tetrahedron 1995, 51: 4439 -
3e
Piers E.Orellana A. Synthesis 2001, 2138 -
3f
Laschat S.Becheanu A.Bell T.Baro A. Synlett 2005, 2547 -
3g
Anderl T.Emo M.Laschat S.Baro A.Frey W. Synthesis 2008, 1619 - Reviews:
-
4a
Vicario JL.Badia D.Carrillo L. Synthesis 2007, 2065 -
4b
Christoffers J.Koripelly G.Rosiak A.Rössle M. Synthesis 2007, 1279 -
4c
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
4d
Lopez F.Feringa BL. In Asymmetric SynthesisChristmann M.Bräse S. Wiley-VCH; Weinheim: 2007. p.78-83 -
4e
Almaºi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299 -
4f
Guo H.-C.Ma J.-A. Angew. Chem. Int. Ed. 2006, 45: 354 ; Angew. Chem. 2006, 118, 362 -
4g
Alexakis A. In Transition Metals for Organic Synthesis 2nd ed.:Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. p.553-562 -
4h
Hayashi T.Yamasaki K. Chem. Rev. 2003, 103: 2829 -
4i
Dilman AD.Ioffe SL. Chem. Rev. 2003, 103: 733 -
4j
Alexakis A.Benhaim C. Eur. J. Org. Chem. 2002, 3221 -
4k
Feringa BL.Naasz R.Imbos R.Arnold LA. In Modern Organocopper ChemistryKrause N. Wiley-VCH; Weinheim: 2002. p.224-258 -
4l
Sibi MP.Manyem S. Tetrahedron 2000, 56: 8033 -
4m
Feringa BL. Acc. Chem. Res. 2000, 33: 346 - 5
Majetich G.Casares A.Chapman D.Behnke M. J. Org. Chem. 1986, 51: 1745 -
6a
Jacques T.Marko IE.Pospisil J. In Multicomponent ReactionsZhu J.Bienayme H. Wiley-VCH; Weinheim: 2005. p.398-452 -
6b
Hosomi A.Miura K. Bull. Chem. Soc. Jpn. 2004, 77: 835 -
6c
Bianchini C.Glendenning L. Chemtracts: Inorg. Chem. 1995, 7: 107 -
6d
Schinzer D. Synthesis 1988, 263 -
6e
Hosomi A.Shirahata A.Sakurai H. Tetrahedron Lett. 1978, 3043 -
6f
Hosomi A.Sakurai H. J. Am. Chem. Soc. 1977, 99: 1673 -
6g
Hosomi A.Sakurai H. Tetrahedron Lett. 1976, 1295 - 7 For cyclic enones and acyclic enoates, see also:
Kuhnert N.Peverley J.Robertson J. Tetrahedron Lett. 1998, 39: 3215 - Selected examples:
-
8a
Rossiter BE.Swingle NM. Chem. Rev. 1992, 92: 771 -
8b
Hutchinson DK.Fuchs PL. Tetrahedron Lett. 1986, 27: 1429 -
8c
House HO.Fischer WF. J. Org. Chem. 1969, 34: 3615 -
9a
Hon Y.-S.Chen F.-L.Huang Y.-P.Lu T.-J. Tetrahedron: Asymmetry 1991, 2: 879 -
9b
Scolastico C. Pure Appl. Chem. 1988, 60: 1689 -
9c
Bernardi A.Cardani S.Pilati T.Poli G.Scolastico C.Villa R. J. Org. Chem. 1988, 53: 1600 -
9d
Bernardi A.Cardani S.Poli G.Scolastico C. J. Org. Chem. 1986, 51: 5041 - 10
Ito H.Nagahara T.Ishihara K.Saito S.Yamamoto H. Angew. Chem. Int. Ed. 2004, 43: 994 ; Angew. Chem. 2004, 116, 1012 -
11a
Ooi T.Kondo Y.Maruoka K. Angew. Chem., Int. Ed. Engl. 1997, 36: 1183 ; Angew. Chem. 1997, 109, 1231 -
11b
Ooi T.Miura T.Kondo Y.Maruoka K. Tetrahedron Lett. 1997, 38: 3947 -
11c
Maruoka K.Imoto H.Saito S.Yamamoto H. J. Am. Chem. Soc. 1994, 116: 4131 - 12
Brown JB.Henbest HB.Jones ERH. J. Chem. Soc. 1950, 3634 - 13
Banwell MG.Corbett M.Gulbis J.Mackay MF.Reum ME. J. Chem. Soc., Perkin Trans. 1 1993, 945 - 14
Naya A.Sagara Y.Ohwaki K.Saeki T.Ichikawa D.Iwasawa Y.Noguchi K.Ohtake N. J. Med. Chem. 2001, 44: 1429 - 15
Yang F.Newsome JJ.Curran DP. J. Am. Chem. Soc. 2006, 128: 14200 - 16
Wright SW.Hageman DL.Wright AS.McClure LD. Tetrahedron Lett. 1997, 38: 7345 - 17
Collon S.Kouklovsky C.Langlois Y. Eur. J. Org. Chem. 2002, 3566 - 22
Tsunoi S.Ryu I.Okuda T.Tanaka M.Komatsu M.Sonoda N. J. Am. Chem. Soc. 1998, 120: 8692 - 24
Burgess EM.Penton HR.Taylor EA. J. Org. Chem. 1973, 38: 26
References and Notes
The initial 1,2-adduct, an enone, is capable of further 1,2-addition, giving the tertiary alcohol.5
19
General Procedures for the Allylation According Method B
In a Schlenk flask 4 Å MS (2.00 g) and TBAF (1.31 g, 0.50 mmol) were dried under high vacuum for 30 min. Under N2 atmosphere DMF (15 mL) was added, the mixture stirred for 30 min, transferred via cannula in a Schlenk flask with 4 Å MS (2.00 g), and stirred for a further 30 min. A solution of the respective ester (1 mmol) in DMF (5 mL) was added followed by HMPA (1.04 mL, 1.07 g, 6.00 mmol) and a solution of trimethylallylsilane (0.95 mL, 685 mg, 6.00 mmol) in DMF (5 mL) at 0 °C. After stirring at 0 °C for 10 min, 1 N HCl in MeOH (5 mL) and H2O (40 mL) were successively added, and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined organic layers were dried (MgSO4), concentrated under vacuum, and the crude product was chromatographed on SiO2 with hexanes-EtOAc.
Benzyl 2-Allylcyclohexanecarboxylate (15b)
R
f
= 0.37 (hexanes-EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 0.89-0.98 (m, 1.5 H, CH2), 1.14-2.03 (m, 13.5 H, Ha-1′, Ha*-1′, H-2, H*-2, H-3, H*-3, H-4, H*-4, H-5, H*-5, H-6, H*-6), 2.06-2.16 (m, 2.5 H, Hb-1′, Hb*-1′, H-1), 2.65 (dt, J = 8.1, 4.1 Hz, 0.5 H, H*-1) 4.90-4.98 (m, 2 H, H-3′), 5.06-5.15 (m, 3 H, ArCH
2, ArCH
2*), 5.65-5.76 (m, 1.5 H, H-2′, H*-2′), 7.29-7.38 (m, 7.5 H, Ar, Ar*) ppm. 13C NMR (125 MHz, CDCl3): δ = 22.6*, 23.8*, 25.4, 25.4*, 25.6, 28.0*, 30.1, 30.8 (C-3, C-4, C-5, C-6), 37.2*, 38.7 (C-2), 34.9*, 39.3 (C-1′), 44.8*, 49.4 (C-1), 65.8*, 65.9 (ArCH2), 115.9*, 116.3 (C-3′), 128.09*, 128.1, 128.1*, 128.2, 128.5, 128.5* (Ar), 136.0, 136.1* (Ar), 136.3, 137.3* (C-2′), 174.6*, 175.9 (CO) ppm. (* denotes minor diastereomer). FT-IR (ATR): 2319 (s), 2856 (s), 2360 (s), 1732 (vs), 1259 (s), 1164 (s), 749 (vs) cm-1. MS (ESI): m/z (%) = 241 (15) [M+ - O], 223 (36), 131 (28), 117 (20), 91 (71) [C7H7
+]. HRMS (ESI): m/z calcd for C17H22NaO2 [M + Na]: 281.1512; found: 281.1503.
Benzyl (3a′
R
,4′
R
,5′
R
,6a′
S
)-4′-Allylhexahydro-2′
H
-spiro[1,3-dioxolane-2,1′-pentalene]-5′-carboxylate (4)
R
f
= 0.58 (hexanes-EtOAc, 6:1); [α]D
20 +23 (c 1.00, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 1.45 (ddd, J = 12.6, 7.3, 2.7 Hz, 1 H, Ha-2′), 1.66-1.71 (m, 1 H, Ha-3′), 1.74-1.87 (m, 2 H, Ha-6, Hb-2′), 1.89-1.98 (m, 2 H, H-4′, Hb-3′), 2.04 (ddd, J = 12.9, 8.6, 6.3 Hz, 1 H, Hb-6′), 2.10-2.27 (m, 3 H, H-1′′, H-3a′), 2.35-2.44 (m, 2 H, H-5′, H-6a′), 3.79-3.98 (m, 4 H, OCH2CH2O), 5.09 (d, J = 5.3 Hz, 2 H, CH
2Ph), 4.92 (ddt, J = 10.0, 2.1, 1.0 Hz, 1 H, Ha-3′′), 4.98 (ddt, J = 17.1, 2.1, 1.4 Hz, 1 H, Hb-3′′), 5.73 (ddt, J = 17.1, 10.0, 7.2 Hz, 1 H, H-2′′), 7.28-7.38 (m, 5 H, Ph) ppm. 13C NMR (125 MHz, CDCl3): δ = 27.8 (C-2′), 32.9, 33.1 (C-6′, C-3′), 37.8 (C-1′′), 46.7 (C-3a′), 48.9, 51.1 (C-5′, C-6a′), 50.4 (C-4′), 63.8, 64.8 (OCH2CH2O), 66.1 (CH2Ph), 116.3 (C-3′′), 118.2 (C-1′), 127.6, 128.1, 128.2 (Ph), 136.1 (CH2
Ph), 136.4 (C-2′′), 174.6 (CO) ppm. FT-IR (ATR): 2946 (w), 2880 (w), 2362 (w), 2342 (w), 1455 (w), 1338 (w), 1152 (s), 1023 (s), 697 (s) cm-1. GC-MS (EI): m/z (%) = 342 (2) [M+], 301 (8) [M+ - C3H5], 251 (6) [M+ - C7H7], 223 (6), 207 (14) [M+ - CO2CH2C6H5], 107 (10) [C7H7O+], 99 (100), 91 (30) [C7H7
+]. HRMS (ESI): m/z calcd for C21H26O4Νa [M + Na]: 365.1723; found: 365.1722.
General Procedures for the Allylation According Method C
Trimethyl aluminium (1.10 mL, 1 M in hexane, 1.10 mmol) was slowly added to a solution of 2,6-diphenylphenol (813 mg, 3.30 mmol) in toluene (6 mL) in a Schlenk flask, and the mixture stirred at r.t. for 30 min. Then a solution of the respective ester (1.00 mmol) in toluene (3 mL) was added. After 5 min, the mixture was cooled to -78 °C and stirred for 1 h. In a further flask n-BuLi (0.88 mL, 1.6 M in hexane, 1.40 mmol) was slowly added to a solution of allyltributyltin (0.43 mL, 463 mg, 1.40 mmol) in THF (4 mL) at -78 °C, and after stirring for 45 min, this allyllithium solution was transferred via cannula to the solution of the ATPH complex, and the reaction mixture stirred at -78 °C for a further 45 min. The reaction was quenched with MeOH (10 mL) and 1 N HCl (5 mL), and the aqueous layer extracted with Et2O (50 mL). The organic layer was separated, dried (MgSO4), concentrated, and the crude product chromatographed on SiO2 with hexanes-EtOAc (50:1).
tert
-Butyl 2-Allylcyclopentanecarboxylate (11a)
R
f
= 0.74 (hexanes-EtOAc, 10:1). 1H NMR (300 MHz, CDCl3): δ = 1.21-1.27 (m, 1 H, Ha-3), 1.44 [s, 9 H, C(CH3)3], 1.45 [s, 4.5 H, C(CH3)3*], 1.49-1.54 (m, 1 H, Ha*-4, Ha*-3), 1.58-1.69 (m, 2 H, H-4), 1.70-2.00 (m, 5.5 H, Hb-3, H-5, Ha*-1′, Hb*-3, Hb*-4, H*-5), 2.02-2.09 (m, 1 H, Ha-1′), 2.09-2.18 (m, 1.5 H, H-2, H*-2), 2.19-2.29 (m, 2.5 H, H-1, Hb-1′, Hb*-1′), 2.78 (ddd, J = 7.8, 7.8, 5.6 Hz, 0.5 H, H*-1), 4.95-5.05 (m, 3 H, H-3′, H*-3′), 5.75-5.86 (m, 1.5 H, H-2′, H*-2′) ppm. 13C NMR (75 MHz, CDCl3): δ = 23.5*, 24.6 (C-4), 28.1, 28.2* [C(CH3)3], 28.3*, 30.2 (C-5), 30.7*, 32.1 (C-3), 35.4*, 39.3 (C-1′), 43.3*, 43.7 (C-2), 48.4*, 50.7 (C-1), 79.8, 80.0* [C(CH3)3], 115.3*, 115.6 (C-3′), 137.3, 137.9* (C-2′), 174.8*, 175.8 (CO) ppm. (* denotes minor diastereomer). FT-IR (ATR): 1723 (s), 1365 (s), 1256 (s), 1144 (vs) cm-1. GC-MS (EI): m/z (%) = 210 (1) [M+], 154 (60) [M+ - C(CH3)], 137 (28) [M+ - OCMe3], 109 (56)
[M+ - CO2CMe3], 67 (32), 57 (100) [C4H9
+]. HRMS (ESI): m/z calcd for C13H22NaO2 [M + Na]: 233.1512; found: 233.1510.
tert
-Butyl 2-Allylcycloheptanecarboxylate (16a)
R
f
= 0.68 (hexanes-EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 1.25-1.34 (m, 1 H, Ha-3), 1.37-1.51 (m, 3 H, Ha-4, CH2), 1.46 [s, 9 H, C(CH3)3], 1.53-1.75 (m, 6 H, Hb-3, Hb-4, H-7, CH2), 1.89-1.99 (m, 2 H, Ha-1′, H-2), 2.00-2.22 (m, 2 H, H-1, Hb-1′), 4.96-5.04 (m, 2 H, H-3′), 5.72-5.81 (m, 1 H, H-2′) ppm. 13C NMR (125 MHz, CDCl3): δ = 26.1, 26.2, 26.3*, 26.5* (C-5, C-6), 28.1, 28.2* [C(CH3)3], 28.3*, 29.3 (C-4), 28.6*, 30.3 (C-7), 30.7, 30.7* (C-3), 37.7*, 40.6 (C-1′), 40.2*, 40.5 (C-2), 48.2*, 51.8 (C-1), 79.7, 79.8* [C(CH3)3], 115.7*, 116.3 (C-3′), 137.1, 138.0* (C-2′), 175.1*, 176.4 (CO) ppm. FT-IR (ATR): 2923 (s), 1723 (vs), 1366 (s), 1142 (vs), 910 (s) cm-1. GC-MS (EI): m/z (%) = 238 (4) [M+], 181 (100) [M+ - CMe3], 165 (24) [M+ - OCMe3], 140 (14), 136 (16) [M+ - CO2CMe3], 122 (10), 109 (20), 95 (56), 81 (24), 67 (12), 57 (90) [C4H9
+], 41 (24) [C3H5
+], 29 (10). HRMS (ESI): m/z calcd for C15H27O2 [M + H]: 239.2006; found: 239.2017.
1-{(3a′
R
,6a′
S
)-3′,3a′6′,6a′-tetrahydro-2′
H
-spiro[1,3-dioxolane-2,1′-pentalen]-5′-yl}but-3-en-1-one (20)
R
f
= 0.38 (hexanes-EtOAc, 6:1). 1H NMR (500 MHz, CDCl3): δ = 1.54-1.72 (m, 3 H, Ha-3′, H-2), 1.98 (dddd, J = 12.1, 10.7, 9.1, 6.5 Hz, 1 H, Hb-3′), 2.59-2.68 (m, 2 H, Ha-6′, H-6a′), 2.76 (dddd, J = 12.6, 2.9, 1.9, 1.9 Hz, 1 H, Hb-6′), 3.44 (dddd, J = 6.7, 2.2, 1.4, 1.4 Hz, 2 H, CH
2CH=CH2), 3.44-3.51 (m, 1 H, H-3a′), 3.85-3.95 (m, 4 H, OCH2CH2O), 5.09-5.20 (m, 2 H, CH2CH=CH
2), 5.96 (ddt, J = 17.2, 10.3, 6.7 Hz, 1 H, CH2CH=CH2), 6.52 (dddd, J = 3.7, 1.9, 1.9, 0.9 Hz, 1 H, H-4′) ppm. 13C NMR (125 MHz, CDCl3): δ = 27.7 (C-3′), 32.9 (C-6′), 33.4 (C-2′), 44.2 (CH2CH=CH2), 46.3 (C-6a′), 49.6 (C-3a′), 63.9, 64.9 (OCH2CH2O), 118.2 (CH2
CH=CH2), 127.7 (C-1′), 131.4 (CH=), 143.6 (C-5′), 145.3 (C-4′), 197.6 (CO) ppm. FT-IR (ATR): 2952 (s), 2875 (s), 1665 (vs), 1617 (s), 1202 (s), 1105 (vs), 1028 (vs), 993 (s), 914 (s), 735 (s) cm-1. MS (ESI): m/z (%) = 257 (100)
[M + Na], 235 (6) [M + H], 211 (8), 193 (16) [M+ - C3H5], 173 (8), 149 (76) [C11H17
+], 131 (8), 121 (8) [C9H13
+], 105 (16), 99 (8). HRMS (ESI): m/z calcd for C14H19O3 [M + H]: 235.1329; found: 235.1320.
tert
-Butyl 2-(2-Hydroxyethyl)cyclopentane-carboxylate (13)
Ozone was passed through a solution of 11a (70 mg, 0.33 mmol) in MeOH-CH2Cl2-pyridine (4:4:1) at -78 °C. Then N2 was passed for 1 min, NaBH4 (33 mg, 0.84 mmol) was added, and the reaction mixture warmed to 0 °C and stirred for 3 h. After quenching with a sat. NH4Cl soln (5 mL), the reaction mixture was extracted with EtOAc (20 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO4), and concentrated under vacuum. The residue was chromatographed on SiO2 with hexanes-EtOAc (3:1, R
f
= 0.34) to give 13 as a colorless oil (52 mg, 74%, dr 67:33). 1H NMR (500 MHz, CDCl3): δ = 1.18-1.28 (m, 1 H, Ha-3), 1.45 [s, 13.5 H, C(CH3)3, C(CH3)3*], 1.52-1.96 (m, 11 H, H-1′, H*-1′, Hb-3, H*-3, H-4, H*-4, H-5, H*-5), 2.11-2.25 (m, 1.5 H, H-2, H-2*), 2.29 (dt, J = 8.8, 7.8 Hz, 1 H, H-1), 2.76 (dt, J = 7.8, 4.6 Hz, 0.5 H, H*-1), 3.60-3.76 (m, 3 H, H-2′, H*-2′) ppm. 13C NMR (125 MHz, CDCl3): δ = 23.6*, 24.8 (C-4), 28.1, 28.2* [C(CH3)3], 28.5*, 30.6 (C-5), 31.2*, 33.3 (C-3), 34.1*, 38.4 (C-1′), 40.2, 40.6* (C-2), 48.4, 50.9 (C-1), 61.6, 62.2 (C-2′), 80.2*, 80.3 [C(CH3)3], 175.1*, 175.5 (CO) ppm. FT-IR (ATR): 2935 (s), 2871 (s), 1722 (vs), 1366 (s), 1145 (vs), 1051 (s), 847 (s) cm-1. GC-MS (EI): m/z (%) = 184 (1), 158 (18) [M+ - C(CH3)], 141 (44) [M+ - OCMe3], 129 (12), 112 (8) [M+ - CO2CMe3], 95 (50), 67 (16), 57 (100) [C4H9
+], 41 (18) [C3H5
+]. HRMS (ESI):
m/z calcd for C12H22NaO3 [M + Na]: 237.1461; found: 237.1453.
Compound 19 was obtained from enantiomerically pure pentalene-1,4-dione monoacetal1b via α-acylation, reduction of the carbonyl group, and subsequent dehydration following the method by Burgess.24