Subscribe to RSS
DOI: 10.1055/s-2008-1077879
Gold(I)-Catalyzed Hydroamination as a General Approach toward the Synthesis of Substituted Hydroisoquinolines: Remarkable Acceleration by Ethanol
Publication History
Publication Date:
11 June 2008 (online)

Abstract
Construction of 1,2-dihydroisoquinolines and 1-alkylidenyl-1,2,3,4-tetrahydroisoquinolines through cationic gold(I) complex catalyzed hydroamination of the corresponding alkynyl carbamates has been demonstrated. In the presence of EtOH, the reaction proceeded smoothly at room temperature with low catalyst loading (1-3 mol%).
Key words
hydroamination - isoquinolines - catalysis - heterocycles - cyclizations
-
1a
Scott JD.Williams RM. Chem. Rev. 2002, 102: 1669 -
1b
Chrzanowska M.Rozwadowska MD. Chem. Rev. 2004, 104: 3341 -
2a
Yanada R.Obika S.Kono H.Takemoto Y. Angew. Chem. Int. Ed. 2006, 45: 3822 -
2b
Obika S.Kono H.Yasui Y.Yanada R.Takemoto Y. J. Org. Chem. 2007, 72: 4462 - For related addition-cyclizations, see:
-
3a
Ohtaka M.Nakamura H.Yamamoto Y. Tetrahedron Lett. 2004, 45: 7339 -
3b
Asao NS.Yudha S.Nogami T.Yamamoto Y. Angew. Chem. Int. Ed. 2005, 44: 5526 -
3c
Gao K.Wu J. J. Org. Chem. 2007, 72: 8611 -
3d
Ding Q.Wu J. Org. Lett. 2007, 9: 4959 -
3e
Su S.Porco JA. Org. Lett. 2007, 9: 4983 - 5 For examples of 1-alkylidenyl-1,2,3,4-tetrahydroiso-quinoline syntheses, see:
Ivanov I.Nikolova S.Statkova-Abeghe S.Angelov P. Heterocycles 2006, 68: 387 ; and references cited therein - For a review, see:
-
6a
Matsubara R.Kobayashi S. Acc. Chem. Res. 2008, 41: 292 - For selected recent examples, see:
-
6b
Cossey KN.Funk RL. J. Am. Chem. Soc. 2004, 126: 12216 -
6c
Matsubara R.Kobayashi S. Angew. Chem. Int. Ed. 2006, 45: 7993 -
6d
Terada M.Sorimachi K. J. Am. Chem. Soc. 2007, 129: 292 -
6e
Harrison TJ.Patrick BO.Dake GR. Org. Lett. 2007, 9: 367 - To the best of our knowledge, there are only two reports describing six-membered-ring formation through hydro-amination of alkynyl amides or carbamates at room temperature:
-
7a
Sashida H.Kawamukai A. Synthesis 1999, 1145 -
7b
Ritter S.Horino Y.Lex J.Schmalz H.-G. Synlett 2006, 3309 - For a 6-endo hydroalkoxylation, see:
-
7c
Hashmi ASK.Schäfer S.Wölfle M.Gil CD.Fischer P.Laguna A.Blanco MC.Gimeno MC. Angew. Chem. Int. Ed. 2007, 46: 6184 -
8a
Alonso F.Beletskaya IP.Yus M. Chem. Rev. 2004, 104: 3079 -
8b
Severin R.Doye S. Chem. Soc. Rev. 2007, 36: 1407 -
9a
Kadzimirsz D.Hildebrandt D.Merz K.Dyker G. Chem. Commun. 2006, 661 -
9b
Yu Y.Stephenson GA.Mitchell D. Tetrahedron Lett. 2006, 47: 3811 -
9c
Ding Q.Ye Y.Fan R.Wu J. J. Org. Chem. 2007, 72: 5439 -
9d
See also ref 3c.
-
12a
Teles JH.Brode S.Chabanas M. Angew. Chem. Int. Ed. 1998, 37: 1415 -
12b
Mézailles N.Ricard L.Gagosz F. Org. Lett. 2005, 7: 4133 - For recent reviews of gold-catalyzed reactions, see:
-
13a
Gorin DJ.Toste FD. Nature (London) 2007, 446: 395 -
13b
Fürstner A.Davies PW. Angew. Chem. Int. Ed. 2007, 46: 3410 -
13c
Hashmi ASK. Chem. Rev. 2007, 107: 3180 -
13d
Jiménez-Núnez E.Echavarren AM. Chem. Commun. 2007, 333 -
13e Recently, we reported that the catalyst, generated from AuCl(PPh3) and AgNTf2, promotes the 6-endo cyclization of N-Boc-propargylamines. See:
Miyabe H.Sami Y.Naito T.Takemoto Y. Heterocycles 2007, 73: 187 - For recent examples of gold-catalyzed hydroaminations, see:
-
14a
Zhang J.Yang C.-G.He C. J. Am. Chem. Soc. 2006, 128: 1798 -
14b
Hashmi ASK.Rudolph M.Schymura S.Visus J.Frey W. Eur. J. Org. Chem. 2006, 4905 -
14c
Liu X.-Y.Ding P.Huang J.-S.Che C.-M. Org. Lett. 2007, 9: 2645 -
14d
Ritter S.Hackelöer K.Schmalz H.-G. Heterocycles 2007, 74: 731 -
14e
See also ref 9a.
-
15a
Mizushima E.Sato K.Hayashi T.Tanaka M. Angew. Chem. Int. Ed. 2002, 41: 4563 -
15b
Mizushima E.Hayashi T.Tanaka M. Org. Lett. 2003, 5: 3349 - For examples, see:
-
16a
Piera J.Krumlinde P.Strübing D.Bäckvall J.-E. Org. Lett. 2007, 9: 2235 -
16b
Watanabe T.Oishi S.Fujii N.Ohno H. Org. Lett. 2007, 9: 4821 -
16c
Also see ref 12a.
- 17 Similar high-field shifts have been observed often in related systems. For example, see:
Cava MP.Mitchell MJ.Havlicek SC.Lindert A.Spangler RJ. J. Org. Chem. 1970, 35: 175 - 18 For example, see:
Kitamura M.Hsiao Y.Ohta M.Tsukamoto M.Ohta T.Takaya H.Noyori R. J. Org. Chem. 1994, 59: 297
References and Notes
For examples of 1,2-dihydroisoquinoline syntheses, see references cited in ref 2.
10The corresponding 5-exo cyclized products, namely isoindoles, were not detected in this work, presumably due to their instability.
11Structure of 2a was fully confirmed by spectroscopy and by its conversion into known 3-phenylisoquinoline; from 1a,
3-phenylisoquinoline was obtained in 70% yield after cleavage of Boc group (TFA, CH2Cl2, r.t., 30 min) followed by oxidation (I2, KOAc, EtOH, reflux, 1 h).
Typical Procedure for the Gold(I)-Catalyzed Hydroamination: To a solution of 1a (309 mg, 1.00 mmol) in DCE (2 mL) were added EtOH (231 mg, 293 µL, 5.02 mmol) and a suspension of AuCl(PPh3) (4.9 mg, 0.0099 mmol) and AgNTf2 (3.8 mg, 0.0098 mmol) in DCE (1 mL) at r.t. After stirring for 2 h, sat. aq NaHCO3 was added and the product was extracted with CHCl3 (3 × 10 mL). The combined organic extracts were washed with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel column chromatography (hexane-EtOAc, 25:1) to afford 2a (256 mg, 83%) as colorless crystals: R
f
0.70 (hexane-EtOAc, 3:1); mp 105-106 °C.
1H NMR (500 MHz, CDCl3, TMS): δ = 7.48 (d, J = 7.3 Hz, 2 H), 7.36 (dd, J
1 = 7.1 Hz, J
2 = 7.3 Hz, 2 H), 7.30 (t, J = 7.1 Hz, 1 H), 7.18-7.27 (m, 4 H), 6.42 (s, 1 H), 4.89 (s, 2 H), 1.05 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 153.0, 140.6, 139.0, 132.7, 132.0, 128.1, 127.7, 127.5, 127.2, 126.3, 125.1, 125.0, 115.2, 81.0, 47.5, 27.6. IR (CHCl3): 1693
cm-1. MS (FAB): m/z = 307 [M+]. Anal. Calcd for C20H21NO2: C, 78.15; H, 6.89; 4.56. Found: C, 78.23; H, 7.07; N, 4.48.
Compound 2e: colorless crystals; R
f
0.55 (hexane-EtOAc, 6:1); mp 168-169 °C. 1H NMR (500 MHz, CDCl3, TMS): δ = 7.16-7.26 (m, 4 H), 7.09 (s, 2 H), 6.94 (s, 1 H), 6.41 (s, 1 H), 4.87 (s, 2 H), 2.33 (s, 6 H), 1.06 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 153.0, 140.8, 138.7, 137.5, 132.7, 131.9, 129.3, 127.5, 127.0, 125.0, 124.9, 124.1, 114.6, 80.8, 47.5, 27.6, 21.2. IR (CHCl3): 1691 cm-1. MS (FAB): m/z = 335 [M+]. Anal. Calcd for C22H25NO2: C, 78.77; H, 7.51; N, 4.18. Found: C, 78.66; H, 7.50; N, 4.23.
Compound 2h: white powder; R
f
0.50 (hexane-EtOAc, 1:1); mp 115-116 °C. 1H NMR (500 MHz, CDCl3, TMS): δ = 7.46 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.15-7.26 (m, 4 H), 6.42 (s, 1 H), 4.85 (s, 2 H), 4.68 (s, 2 H), 2.58 (s, 1 H), 1.06 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 152.9, 140.6, 140.2, 137.9, 132.5, 131.8, 127.5, 127.2, 126.6, 126.2, 125.0, 124.9, 115.2, 81.0, 64.7, 47.4, 27.6.
IR (CHCl3): 3606, 1693 cm-1. MS (FAB): m/z = 337 [M+]. Anal. Calcd for C21H23NO3: C, 74.75; H, 6.87; N, 4.15. Found: C, 74.47; H, 6.87; N, 3.88.
Compound 4a: colorless needles: R
f
0.38 (hexane-EtOAc, 2:1); mp 164-165 °C. 1H NMR (500 MHz, CDCl3, TMS): δ = 7.47 (d, J = 7.6 Hz, 2 H), 7.32 (dd, J
1 = J
2 = 7.6 Hz, 2 H), 7.21 (s, 1 H), 7.19 (t, J = 7.6 Hz, 1 H), 6.74 (s, 1 H), 6.61 (s, 1 H), 4.60 (br, 1 H), 3.97 (s, 3 H), 3.89 (s, 3 H), 3.27 (br, 1 H), 3.13 (br, 1 H), 2.66 (br, 1 H), 1.02 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 153.3, 149.3, 147.7, 137.2, 134.0, 128.4, 128.3, 128.0, 126.8, 125.4, 117.6, 111.7, 106.4, 80.3, 56.2, 55.9, 43.0, 28.5, 27.7. IR (CHCl3): 1682 cm-1.
MS (FAB): m/z = 381 [M+]. Anal. Calcd for C23H27NO4: C, 72.42; H, 7.13; N, 3.67. Found: C, 72.38; H, 7.08; N, 3.47.
Compound 4c: colorless crystals; R
f
0.38 (hexane-EtOAc, 2:1); mp 146-147 °C. 1H NMR (500 MHz, CDCl3, TMS):
δ = 7.46 (s, 1 H), 7.36 (d, J = 7.8 Hz, 1 H), 7.24 (dd, J
1 =
J
2 = 7.8 Hz, 1 H), 7.18 (s, 1 H), 7.17 (d, J = 7.8 Hz, 1 H), 6.68 (s, 1 H), 6.61 (s, 1 H), 4.59 (br, 1 H), 3.96 (s, 3 H), 3.89 (s, 3 H), 3.26 (br, 1 H), 3.12 (br, 1 H), 2.66 (br, 1 H), 1.07 (s, 9 H). 13C NMR (126 MHz, CDCl3): d = 153.0, 149.5, 147.7, 139.1, 135.3, 134.2, 129.5, 128.3, 128.2, 126.7, 126.3, 125.0, 116.0, 111.7, 106.4, 80.6, 56.2, 55.9, 43.1, 28.3, 27.8.
IR (CHCl3): 1685 cm-1. MS (FAB): m/z = 415 [M+]. Anal. Calcd for C23H26ClNO4: C, 66.42; H, 6.30; N, 3.37. Found: C, 66.38; H, 6.32; N, 3.35.