Subscribe to RSS
DOI: 10.1055/s-2008-1077949
Microwave-Assisted Cleavage of Aryl Methyl Ethers with Lithium Thioethoxide (LiSEt)
Publication History
Publication Date:
15 July 2008 (online)
Abstract
Lithium thioethoxide (LiSEt), a white solid easily prepared from EtSH and n-BuLi in hexane, was identified as a highly efficient reagent for the cleavage (O-demethylation) of aryl methyl ethers, i.e. methyl-protected phenols. Of particular synthetic value are applications in the double deprotection of 1,2-dimethoxyarenes (to give catechols) and in the selective monodeprotection of di- and trimethoxyarenes. The thermal reactions, which are usually performed in DMF as a solvent, can be greatly accelerated through microwave irradiation. In this case, the monodemethylated products are usually formed in high (80-99%) yield within only 15 minutes.
Key words
lithium - thioethanolate - phenol protecting groups - microwave irradiation - SN2 reactions - demethylation
-
1a
Wuts PGM.Greene TW. Greene’s Protective Groups in Organic Synthesis 4th ed.: Wiley; Hoboken, NJ: 2006. -
1b
Kocienski PJ. Protecting Groups 3rd ed.: Georg Thieme Verlag; Stuttgart: 2004. - For selected examples, see:
-
2a
Wu Q.Fu D.-X.Hou A.-J.Lei G.-Q.Liu Z.-J.Chen J.-K.Zhou T.-S. Chem. Pharm. Bull. 2005, 53: 1065 -
2b
Adams M.Pacher T.Greger H.Bauer R. J. Nat. Prod. 2005, 68: 83 -
2c
Kanchanapoom T.Noiarsa P.Tiengtham P.Otsuka H.Ruchirawat S. Chem. Pharm. Bull. 2005, 53: 579 -
3a
Kawasaki I.Matsuda K.Kaneko T. Bull. Chem. Soc. Jpn. 1971, 44: 1986 -
3b
Landini D.Montanari F.Rolla F. Synthesis 1978, 771 -
3c
Kamal A.Gayatri NL. Tetrahedron Lett. 1996, 37: 3359 -
3d
Hwang K.Park S. Synth. Commun. 1993, 23: 2845 -
4a
Jung ME.Lyster MA. J. Org. Chem. 1977, 42: 3761 -
4b
Minamikawa J.Brossi A. Tetrahedron Lett. 1978, 3085 -
4c
Olah GA.Narang SC. Tetrahedron 1982, 38: 2225 -
4d
Groutas WC.Felker D. Synthesis 1980, 861 - 5
Morita T.Okamoto Y.Sakurai H. J. Chem. Soc., Chem. Commun. 1978, 874 -
6a
McOmie JFW.West DE. Org. Synth., Coll. Vol. V Wiley; New York: 1973. p.412 -
6b
Vickery EH.Pahler LF.Eisenbraun EJ. J. Org. Chem. 1979, 44: 4444 -
6c
Demuynck M.Clercq P.Vandewalle M. J. Org. Chem. 1979, 44: 4863 -
6d
Meier H.Dullweber U. J. Org. Chem. 1997, 62: 7667 -
6e
Ryu I.Matsubara H.Yasuda S.Nakamura H.Curran D. J. Am. Chem. Soc. 2002, 124: 12946 -
7a
Williard PG.Fryhle CB. Tetrahedron Lett. 1980, 21: 3731 -
7b
Konieczny MT.Maciejewski G.Konieczny W. Synthesis 2005, 1575 -
8a
Nagaoka H.Schmid G.Iio H.Kishi Y. Tetrahedron Lett. 1981, 22: 899 -
8b
Gerecke M.Borer R.Brossi A. Helv. Chim. Acta 1976, 59: 2551 -
9a
Lansinger JM.Ronald RC. Synth. Commun. 1979, 9: 341 -
9b
Narayana C.Padmanabhan S.Kabalka GW. Tetrahedron Lett. 1990, 21: 6977 -
10a
Grieco PA.Ferrino S.Vidari G. J. Am. Chem. Soc. 1980, 102: 7586 -
10b
Node M.Hori H.Fujita E. J. Chem. Soc., Perkin. Trans. 1 1976, 2237 -
11a
Parker KA.Petraitis JJ. Tetrahedron Lett. 1981, 22: 397 -
11b
Li T.-T.Wu YL. J. Am. Chem. Soc. 1981, 103: 7007 -
11c
Kawamura Y.Takatsuki H.Torii F.Horie T. Bull. Chem. Soc. Jpn. 1994, 67: 511 - 12
Horie T.Kobayashi T.Kawamura Y.Yoshida I.Tominaga H.Yamashita K. Bull. Chem. Soc. Jpn. 1995, 68: 2033 -
13a
Fürstner A.Seidel G. J. Org. Chem. 1997, 62: 2332 -
13b
Köster R.Seidel G. Organometallic Syntheses 1988, 4: 440 -
13c
Bhatt MV. J. Organomet. Chem. 1978, 156: 221 - 14
Yamaguchi S.Nedachi M.Yokoyama H.Hirai Y. Tetrahedron Lett. 1999, 40: 7363 -
15a
Feutrill GI.Mirrington RN. Tetrahedron Lett. 1970, 1327 -
15b
Feutrill GI.Mirrington RN. Aust. J. Chem. 1972, 25: 1719 -
15c
Dodge JA.Stocksdale MG.Fahey KJ.Jones CD. J. Org. Chem. 1995, 60: 739 -
15d
Smith ABIII.Schow SR.Bloom JD.Thompson AS.Winzenberg KN. J. Am. Chem. Soc. 1982, 104: 4015 -
15e
Myers AG.Tom NJ.Fraley ME.Cohen SB.Mader DJ. J. Am. Chem. Soc. 1997, 119: 6072 - 16
Huffman JW.Joyner H.Lee MD.Jordan D.Pennington WT. J. Org. Chem. 1991, 56: 2081 - 17
Ahmad R.Saá JM.Cava MP. J. Org. Chem. 1977, 42: 1228 - 18
Hansson C.Wickberg B. Synthesis 1976, 191 - 19
Bernard AM.Ghiani MR.Piras PP.Rivoldini A. Synthesis 1989, 287 -
20a
Mechoulam R.Gaoni Y. J. Am. Chem. Soc. 1965, 87: 3273 -
20b
Alonso E.Ramon DJ.Yus M. J. Org. Chem. 1997, 62: 417 -
20c
Wilds AL.McCormack WB. J. Am. Chem. Soc. 1948, 70: 4127 - 21
Kirschke K.Wollf E. J. Prakt. Chem./Chem.-Ztg. 1995, 337: 405 - 22
Harrison IT. J. Chem. Soc., Chem. Commun. 1969, 616 - 23
McCarthy JR.Moore JL.Crege RJ. Tetrahedron Lett. 1978, 5183 - 24
Ireland RE.Walba D. Org. Synth. Coll. Vol. VI: Wiley; New York: 1988. p.567 -
25a
Newman MS.Sankaran V.Olson DR. J. Am. Chem. Soc. 1976, 98: 3237 -
25b
Newman MS.Sankaran V.Olson DR. J. Am. Chem. Soc. 1976, 98: 3237 - 26
Kelly TR.Dali HM.Tsang WG. Tetrahedron Lett. 1977, 3859 - 27
Welch SC.Rao ASCP. Tetrahedron Lett. 1977, 505 - 28
Hwu JR.Tsay S.-C. J. Org. Chem. 1990, 55: 5987 -
29a
Driver G.Johnson KE. Green Chem. 2003, 5: 163 -
29b
Chauhan SMS.Jain N. J. Chem. Res. 2004, 693 -
30a
Melillo DG.Larsen RD.Mathre DJ.Shukis WF.Wood AW.Collelouri JR. J. Org. Chem. 1987, 52: 5143 -
30b
Fujii N.Irie H.Yajima H. J. Chem. Soc., Perkin Trans. 1 1977, 2288 -
31a
Boger DL.Miyazaki S.Kim SH.Wu JH.Castle SL.Loiseleur O.Jin Q. J. Am. Chem. Soc. 1999, 121: 10004 -
31b
Boger DL.Kim SH.Mori Y.Weng J.-H.Rogel O.Castle SL.McAtee JJ. J. Am. Chem. Soc. 2001, 123: 1862 -
31c
Node M.Nishide K.Fuji K.Fujita E. J. Org. Chem. 1980, 45: 4275 - 32
Evans DA.Dinsmore CJ.Ratz AM.Evrard DA.Barrow JC. J. Am. Chem. Soc. 1997, 119: 3417 - 33
Inaba T.Umezawa I.Yuasa M.Inoue T.Mihashi S.Itokawa H.Ogura K. J. Org. Chem. 1987, 52: 2957 - 34 For a review, see:
Schmalz H.-G.Gotov B.Böttcher A. In Arene Metal Complexes. Topics in Organometallic Chemistry Vol. 7:Kündig EP. Springer; Berlin: 2004. p.157 -
35a
Geller T. PhD Dissertation TU-Berlin; Germany: 1998. -
35b
Majdalani A.Schmalz H.-G. Synlett 1997, 1303 -
35c
Majdalani A.Schmalz H.-G. Tetrahedron Lett. 1997, 38: 4545 -
35d
Geller T.Schmalz H.-G.Bats JW. Tetrahedron Lett. 1998, 39: 1537 -
35e
Dehmel F.Schmalz H.-G. Org. Lett. 2001, 3: 3579 -
35f
Dehmel F.Lex J.Schmalz H.-G. Org. Lett. 2002, 4: 3915 - 36 For an efficient entry to stilbene 5 by cross-metathesis, see:
Velder J.Ritter S.Lex J.Schmalz H.-G. Synthesis 2006, 273 -
37a
Polunin KE.Polunina IA.Schmalz H.-G. Mendeleev Commun. 2002, 12: 178 -
37b
Polunin KE.Schmalz H.-G. Russ. J. Coord. Chem. 2004, 30: 252 -
38a For
synthetic approaches towards pestatone, see:
Cueto M.Jensen PR.Kaufmann C.Fenical W.Lobkovsky E.Clardy J. J. Nat. Prod. 2001, 64: 1444 -
38b
Kaiser F.Schmalz H.-G. Tetrahedron 2003, 59: 7345 -
38c
Iijima D.Tanaka D.Hamada M.Ogamino T.Ishikawa Y.Nishiyama S. Tetrahedron Lett. 2004, 45: 5469 - For a review on colchicine total synthesis, see:
-
39a
Graening T.Schmalz H.-G. Angew. Chem. Int. Ed. 2003, 42: 2580 ; Angew. Chem. 2003, 115, 2684 -
39b For a recent work from
this laboratory, see:
Graening T.Bette V.Neudörfl J.Lex J.Schmalz H.-G. Org. Lett. 2005, 7: 4317 - For previous examples of selective O-demethylation reactions with thiolate-based reagents which, however, require harsh reaction conditions, long reaction times and/or the use of HMPT as a toxic additive, see:
-
40a
Moos WH.Gless RD.Rapoport H. J. Org. Chem. 1982, 47: 1831 -
40b
Lal K.Zarate EA.Youngs WJ.Salomon RG. J. Am. Chem. Soc. 1986, 108: 1311 -
40c
Dodge JA.Stocksdale MG.Fahey KJ.Jones CD. J. Org. Chem. 1995, 60: 739 -
40d
Loubinoux B.Coudert G.Guillaumet G. Synthesis 1980, 638 -
40e
Lal K.Ghosh S.Salomon RG. J. Org. Chem. 1987, 52: 1072 -
41a
Kappe CO.Stadler A. Microwaves in Organic and Medicinal Chemistry Wiley-VCH; Weinheim: 2005. -
41b
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
41c
Kappe CO.Dallinger D. Nat. Rev. Drug Discovery 2006, 5: 51 - For the use of microwave irradiation in the cleavage or trans protection of aryl methyl ether using different reagents, see:
-
42a
Fredriksson A.Stone-Elander S. J. Labelled Compd. Radiopharm. 2002, 45: 529 -
42b
Marette C.Larrouquet C.Tisne’s P.Deloyeb J.-B.Grasa E. Tetrahedron Lett. 2006, 47: 6947
References and Notes
DMF (99.8%, Fluka) was stored
over molecular sieves. GC-MS measurements were carried
out on an Agilent HP6890 instrument with MS detector 5937 N using
an Optima 1 MS (Macherey-Nagel) 30 m × 0.25 mm
capillary column with H2 as carrier gas. NMR data were
measured on Bruker DPX 300 and AC 250 instruments. Chemical shifts
(δ) are given in ppm relative to the solvent reference
as the internal standard. Reactions under microwave irradiation
were performed in a CEM Discover instrument (300 W) in glass tubes
with temperature and pressure control.
Preparation
of the Reagent (LiSEt): In a dry 500-mL Schlenk flask a solution
of n-BuLi (1.3 M) in hexane (120 mL,
160 mmol) was diluted with hexane (150 mL) under an argon atmosphere.
The solution was cooled to 0 ˚C and under rapid stirring
EtSH (200 mmol, 1.25 equiv, 15 mL) was added dropwise, whereupon
a white precipitate formed. The reaction mixture was stirred at
0 ˚C for 10 min and at r.t. for 30 min. After removal of
the solvent (always ensuring inert conditions) the residue was dried
in vacuo to give LiSEt as a white solid (10.6 g, 156 mmol, 97%).
The product was stored under argon at ambient temperature. C2H5SLi;
M = 68.06 g/mol. ¹H NMR (250
MHz, DMSO): δ = 1.06 (t, ³
J = 7.2 Hz, 3 H, H2), 2.27 (q, ³
J = 7.3 Hz, 2 H, H1).
General Procedure: The substrate (0.6 mmol,
1 equiv) and LiSEt (1.2 mmol, 2 equiv) were weighed into the reaction vessel
(either a Schlenk tube or a microwave reactor), which was then evacuated
and flushed with argon three times before DMF (5 mL) was added and
the reaction mixture was heated/irradiated as specified
in Table
[¹]
. Reactions
were monitored by TLC and/or GC-MS. For workup,
the mixture was cooled to r.t. and partitioned between 2 N aq HCl
(5 mL) and MTBE (5 mL). The aqueous layer was re-extracted with MTBE
(3 × 10 mL). The combined organic layers were washed with
brine (20 mL), dried over MgSO4, filtered through a pad
of silica and solvents were evaporated. The residue was flash chromatographed
on silica gel with
c-hexane-EtOAc
(4:1).
3-Methoxyphenol
(10): colorless oil. ¹H
NMR (CDCl3): δ = 3.76 (s, 3 H), 5.03
(br s, 1 H), 6.40-6.43, 6.46-6.50 (m, 3 H), 7.09-7.14
(m, 1 H). ¹³C NMR (CDCl3): δ = 55.3
(q), 101.5, 106.4, 107.9 (3 × d), 130.1 (d), 156.7 (s),
160.9 (s). HRMS (EI, 70 eV): m/z calcd for C7H8O2:
124.0524; found: 124.053.
3-Methoxy-2-methylphenol
(12): white solid; mp 42-43 ˚C. ¹H
NMR (CDCl3): δ = 2.11 (s, 3 H), 3.81
(s, 3 H), 4.80 (s, 1 H), 6.44 (d, ³
J = 8.5 Hz, 1 H), 6.47 (d, ³
J = 8.5 Hz, 1 H), 7.02 (ψt, ³
J = 8.5 Hz, 1 H). ¹³C
NMR (CDCl3): δ = 7.9 (q), 55.6 (q),
103.0 (d), 108.0 (d), 112.1 (s), 126.4 (d), 154.3 (q), 158.6 (q).
HRMS (EI, 70 eV): m/z calcd for C8H10O2: 138.0681;
found: 138.068.
2-Hydroxy-6-methoxybenzonitrile
(14): white solid; mp 163-164 ˚C. ¹H
NMR (CD3OD): δ = 3.87 (s, 3 H), 6.50
(d, ³
J = 8.4
Hz, 1 H), 6.52 (d, ³
J = 8.4
Hz, 1 H), 7.34 (ψt, ³
J = 8.5
Hz, 1 H). ¹³C NMR (CD3OD): δ = 56.7
(q), 90.6 (s), 102.9 (d), 109.0 (d), 115.4 (s), 136.1 (d), 163.0
(s), 163.9 (s). IR (ATR): 3220 (br m), 2230 (s), 1607 (s), 1594
(s), 1476 (s) cm-¹. HRMS (EI, 70 eV): m/z calcd
for C8H7NO2: 149.0477; found: 149.047.
3,5-Dimethoxybenzoic acid
(16):
GC-MS and NMR data matched those of an authentic(commercial)
sample.
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone
(20): colorless oil. ¹H
NMR (CDCl3): δ = 2.54 (s, 3 H), 3.92
(s, 6 H), 6.03 (br s, 1 H), 7.22 (s, 2 H). ¹³C
NMR (CDCl3): δ = 26.2 (q), 56.4 (q),
105.7 (d), 128.8 (s), 139.7 (s), 146.7 (s), 200.3 (s). IR (ATR):
3350 (br m), 1728 (s) cm-¹. HRMS:
m/z calcd
for C10H12O4: 196.0736; found:
196.074.
5-Bromo-2,3-dimethoxyphenol
(22a): white solid; mp 68-70 ˚C. ¹H
NMR (CDCl3): δ = 3.82 (s, 3 H), 3.85
(s, 3 H), 5.83 (br s, 1 H), 6.59 (d, 4
J = 2.1
Hz, 1 H), 6.75 (d, 4
J = 2.1
Hz, 1 H). ¹³C NMR (CDCl3): δ = 56.5
(q), 60.9 (q), 107.9 (d), 111.6 (d), 116.4 (s), 134.8 (s), 149.9
(s), 152.8 (s). MS (EI, 70 eV; isotope pattern reflected a molecule
with one bromine atom): m/z (%) = 234 (95) [M]+,
232 (100) [M]+, 219 (95), 217
(97), 191 (46), 189 (55), 173 (29), 171 (31), 110 (14), 67 (41).
HRMS: m/z calcd
for C8H9O3
79Br: 231.9735;
found: 231.974.
4-Bromo-2,6-dimethoxyphenol (22b): white solid; mp 90-92 ˚C. ¹H
NMR (CDCl3): δ = 3.86 (s, 6 H), 5.42
(br s, 1 H), 6.70 (s, 2 H). ¹³C NMR
(CDCl3): δ = 56.4 (q), 108.4 (d), 111.04
(s), 138.9 (s), 147.5 (s). MS (EI, 70 eV; isotope pattern reflected
a molecule with one Br atom): m/z (%) = 234 (93) [M]+,
232 (100) [M]+, 219 (37),
217 (41), 191 (27), 189 (30), 176 (16), 174 (16), 110 (13), 67 (19),
50 (16). HRMS: m/z calcd for C8H9
79BrO3:
231.9735; found: 231.974.
2-Bromo-4,6-dichloro-3-methoxy-5-methylphenol
(24): white solid; mp 128 ˚C. ¹H
NMR (CDCl3): δ = 2.44 (s, 3 H), 3.85
(s, 3 H), 5.91 (s, 1 H). ¹³C NMR (CDCl3): δ = 18.1
(q), 60.6 (q), 103.7 (s), 117.0 (s), 121.2 (s), 134.9 (s), 148.0
(s), 152.5 (s). MS (EI, 70 eV; isotope pattern reflected a molecule
with one Br and two Cl atoms): m/z (%) = 290 (6) [M]+,
288 (44) [M]+, 286 (100) [M]+,
284 (63) [M]+, 273 (14), 271
(31), 269 (20), 245 (23), 243 (56), 241 (34), 179 (15), 177 (14).
HRMS: m/z calcd
for C8H7O2
79Br³5Cl2: 283.9006;
found: 283.901.