Subscribe to RSS
DOI: 10.1055/s-2008-1077975
Reaction of a Polycyclic Diketone with Lithiated Methoxyallene: Synthesis of New Functionalized Cage Compounds
Publication History
Publication Date:
15 July 2008 (online)
Abstract
Syntheses of several new functionalized cage compounds are described. The key steps of the reaction sequence are addition of lithiated methoxyallene 2 to cage diketone 1, preparation of dehydrated intermediate 5, and its ozonolysis leading to diester 7. Alternatively, 5 could be hydrolyzed to provide cage compound 6 with a bisenone subunit. Via diol 9 chiral crown ether 11 could be prepared in low yield. A first stereoselective epoxidation of chalcone 12 with tert-butyl hydroperoxide in the presence of 11 gave the epoxide 13 in reasonable yield, but with a low level of enantioselectivity.
Key words
methoxyallene - cage molecules - crown ether - ozonolysis - epoxidation.
- Reviews:
-
1a
Zimmer R. Synthesis 1993, 165 -
1b
Zimmer R.Khan FA. J. Prakt. Chem. 1996, 338: 92 -
1c
Zimmer R.Dinesh CU.Nandanan E.Khan FA. Chem. Rev. 2000, 100: 3067 -
1d
Tius MA. Acc. Chem. Res. 2003, 36: 281 -
1e
Zimmer R.Reissig H.-U. Donor-Substituted Allenes, In Modern Allene ChemistryKrause N.Hashmi ASK. Wiley-VCH; Weinheim: 2004. p.425 -
1f
Tius MA. Cyclizations of Allenes, In Modern Allene ChemistryKrause N.Hashmi ASK. Wiley-VCH; Weinheim: 2004. p.817 -
1g
Tius MA. Eur. J. Org. Chem. 2005, 2193 -
1h
Reissig H.-U.Zimmer R. In Science of Synthesis Vol. 44:Krause N. Thieme; Stuttgart: 2007. p.301 -
1i
Tius MA. 1-Methoxyallenyl Lithium, In Encyclopedia of Reagents for Organic Synthesis Vol. 5:Paquette LA. Wiley; Chichester: 1995. p.3316 -
1j
Zimmer R.Reissig H.-U. 1-Methoxyallenyl Lithium, In Encyclopedia of Reagents for Organic Synthesis 1st update:Paquette LA. Wiley; Chichester: 2005. -
2a
Zimmer R.Reissig H.-U. Angew. Chem. Int. Ed. Engl. 1988, 27: 1518 ; Angew. Chem. 1988, 100, 1576 -
2b
Zimmer R.Reissig H.-U. Liebigs Ann. Chem. 1991, 553 -
2c
Zimmer R.Angermann J.Hain U.Hiller F.Reissig H.-U. Synthesis 1997, 1467 -
2d
Zimmer R.Orschel B.Scherer S.Reissig H.-U. Synthesis 2002, 1553 -
2e
Zimmer R.Collas M.Czerwonka R.Hain U.Reissig H.-U. Synthesis 2008, 237 -
3a
Schade W.Reissig H.-U. Synlett 1999, 632 -
3b
Pulz R.Cicchi S.Brandi A.Reissig H.-U. Eur. J. Org. Chem. 2003, 1153 -
3c
Helms M.Schade W.Pulz R.Watanabe T.Al-Harrasi A.Fisera L.Hlobilova I.Zahn G.Reissig H.-U. Eur. J. Org. Chem. 2005, 1003 -
4a
Hoff S.Brandsma L.Arens JF. Recl. Trav. Chim. Pays-Bas 1969, 88: 609 -
4b
Gange D.Magnus P. J. Am. Chem. Soc. 1978, 100: 7746 -
4c
Gange D.Magnus P.Bass L.Arnold EV.Clardy J. J. Am. Chem. Soc. 1980, 102: 2134 -
4d
Magnus P.Albaugh-Robertson P. J. Chem. Soc., Chem. Commun. 1984, 804 -
4e
Hormuth S.Reissig H.-U. J. Org. Chem. 1994, 59: 67 -
4f
Hormuth S.Schade W.Reissig H.-U. Liebigs Ann. 1996, 2001 -
4g
Flögel O.Reissig H.-U. Eur. J. Org. Chem. 2004, 2797 -
4h
Hölemann A.Reissig H.-U. Synthesis 2004, 1963 -
4i
Brasholz M.Reissig H.-U. Synlett 2007, 1294 -
4j
Brasholz M.Reissig H.-U. Angew. Chem. Int. Ed. 2007, 46: 1634 ; Angew. Chem. 2007, 119, 1659 -
5a
Breuil-Desvergnes V.Compain P.Vatèle J.-M.Goré J. Tetrahedron Lett. 1999, 40: 5009 -
5b
Breuil-Desvergnes V.Compain P.Vatèle J.-M.Goré J. Tetrahedron Lett. 1999, 40: 8789 -
5c
Okala Amombo M.Hausherr A.Reissig H.-U. Synlett 1999, 1871 -
5d
Breuil-Desvergnes V.Goré J. Tetrahedron 2001, 57: 1939 -
5e
Breuil-Desvergnes V.Goré J. Tetrahedron 2001, 57: 1951 -
5f
Flögel O.Okala Amombo MG.Reissig H.-U.Zahn G.Brüdgam I.Hartl H. Chem. Eur. J. 2003, 9: 1405 -
5g
Flögel O.Reissig H.-U. Synlett 2004, 895 -
5h
Chowdhury MA.Reissig H.-U. Synlett 2006, 2383 -
5i
Kaden S.Reissig H.-U. Org. Lett. 2006, 8: 4763 - 6
Kaden S.Brockmann M.Reissig H.-U. Helv. Chim. Acta 2005, 88: 1826 -
7a
Flögel O.Dash J.Brüdgam I.Hartl H.Reissig H.-U. Chem. Eur. J. 2004, 10: 4283 -
7b
Dash J.Lechel T.Reissig H.-U. Org. Lett. 2007, 9: 5541 -
7c
Lechel T.Dash J.Brüdgam I.Reissig H.-U. Eur. J. Org. Chem. 2008, 3647 -
8a
Gwiazda M.Reissig H.-U. Synlett 2006, 1683 -
8b
Gwiazda M.Reissig H.-U. Synthesis 2008, 990 - 9
Kaden S.Reissig H.-U.Brüdgam I.Hartl H. Synthesis 2006, 1351 - 10
Sörgel S.Azap C.Reissig H.-U. Org. Lett. 2006, 8: 4875 -
11a
Reissig H.-U.Hormuth S.Schade W.Okala Amombo M.Watanabe T.Pulz R.Hausherr A.Zimmer R. J. Heterocycl. Chem. 2000, 37: 597 -
11b
Brasholz M.Reissig H.-U.Zimmer R. Acc. Chem. Res. 2008, in press -
13a
Jeong I.-Y.Nagao Y. Synlett 1999, 579 -
13b
Voigt B.Brands M.Goddard R.Wartchow R.Butenschön H. Eur. J. Org. Chem. 1998, 2719 - Reviews:
-
14a
Marchand AP. Synlett 1991, 73 -
14b
Marchand AP. Aldrichimica Acta 1995, 28: 95 - 15
Marchand AP.Chong H.-S.Ganguly B. Tetrahedron: Asymmetry 1999, 10: 4695 - 16
Govender T.Hariprakasha HK.Kruger HG.Marchand AP. Tetrahedron: Asymmetry 2003, 14: 1553 -
17a
Marchand AP.Alihod˛ić S.McKim AS.Kumar KA.Mlinarić-Majerski K.Šumanovac T.Bott SG. Tetrahedron Lett. 1998, 39: 1861 -
17b
Marchand AP.Hazlewood A.Huang Z.Vadlakonda SK.Rocha J.-DR.Power TD.Mlinarić-Majerski K.Klaic L.Kragol G.Byran JC. Struct. Chem. 2003, 14: 279 -
17c
Marchand AP.Gore VK.Srinivas G. Heterocycles 2003, 61: 541 -
17d
Romański J.Marchand AP. Polish J. Chem. 2004, 78: 223 - 18
Cookson RC.Crundwell E.Hill RR.Hudec J. J. Chem. Soc. 1964, 3062 - 21
Hoff S.Brandsma L.Arens JF. Recl. Trav. Chim. Pays-Bas 1968, 87: 1179 - 22 Review on α,β-unsaturated
carbonyl compounds:
Bulman Page PC.Klair SS.Rosenthal S. Chem. Soc. Rev. 1990, 19: 147 - 23 The diester 7 was
recently obtained by a one-pot reaction of 1 with
dimethoxycarbene in moist toluene in 19% yield, see:
Romański J.Mlostoń G.Heimgartner H. Helv. Chim. Acta 2007, 90: 1279 - 25
Hormuth S.Reissig H.-U.Dorsch D. Liebigs Ann. Chem. 1994, 121 -
26a For
a mechanistic discussion of the ozonolysis of allenes, see:
Langler RF.Raheja RK.Schank K.Beck H. Helv. Chim. Acta 2001, 84: 1943 ; and references therein -
26b
The formation of diester 7 can be rationalized by single-electron transfers via intermediates A to D, whereas the formation of the methyl ketone 8 is more speculative. Therefore, a single-electron transfer to intermediate C by O2 - and conversion of the carbonyl group into an acetal moiety by the solvent methanol may lead to this side product (Scheme [²] ).
- For epoxidations using chiral crown ethers, see:
-
27a
Bakó P.Bakó T.Mészáros A.Keglevich G.Szőllősy A.Bodor S.Makó A.Tőke L. Synlett 2004, 643 -
27b
Hori K.Tamura M.Tani K.Nishiwaki N.Ariga M.Tohda Y. Tetrahedron Lett. 2006, 47: 3115 ; and references cited therein - 28
Stock HT.Kellogg RM. J. Org. Chem. 1996, 61: 3093 - For chiral recognition of racemic primary amines by BINOL-containing crown ethers, see:
-
31a
Kyba EP.Koga K.Sousa LR.Siegel MG.Cram DJ. J. Am. Chem. Soc. 1973, 95: 2692 -
31b
Cram DJ. Science 1974, 183: 803 -
31c
Yamamoto K.Yunioka H.Okamoto Y.Chikamatsu H. J. Chem. Soc., Chem. Commun. 1987, 168 -
31d
Galán A.Andreu D.Echavarren AM.Prados P.de Mendoza J. J. Am. Chem. Soc. 1992, 114: 1511 ; see also refs. 15 and 16
References and Notes
Watanabe, T.; Reissig, H.-U., unpublished results.
19
Bisallenyl Adduct
4
Methoxyallene (4.20 g, 60.0 mmol) was dissolved
in dry THF (35 mL) and treated with n-BuLi
(16.0 mL, 40.0 mmol, 2.5 M in hexanes) at -40 ˚C
under argon atmosphere. After 5 min the solution of 2 was
cooled to -78 ˚C and diketone 1 (0.522 g, 3.00 mmol, dissolved in 5 mL
of THF) was added within 5 min. The reaction mixture was stirred
for 2 h at
-78 ˚C and quenched
with sat. aq NH4Cl solution (25 mL). Warmup to r.t. was
followed by extraction with Et2O (3 × 30 mL)
and drying (Na2SO4). Purification of the crude
product by recrystallization (hexane-Et2O) provided 4 (0.678 g, 74%) as a beige-colored
solid, mp 148-150 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 1.03,
1.54 (AB system, J
AB = 10.5 Hz,
2 H, CH2), 2.25-2.46, 2.61-2.73 (2
m, 4 H each, 8 CH), 3.43 (s, 6 H, OMe), 5.46 (s, 2 H, OH), 5.48
(s, 4 H, =CH2). ¹³C
NMR (62.9 MHz, CDCl3): δ = 196.6
(s, C=C=CH2), 137.5
(s, =C=COMe), 91.8
(t, =C=CH2),
79.1 (s, C-3, C-5), 56.6 (q, OMe), 47.8, 44.8, 40.7, 33.8 (4 d,
CH), 41.4 (t, CH2). IR (KBr): 3630-3150 (OH),
3020-2820 (=CH, CH), 1930 (C=C=C),
1650 (C=C) cm-¹. MS (EI, 80
eV): m/z (%) = 314 (6) [M]+,
281 (44), 161 (46), 147 (66), 115 (70), 103 (34), 69 (65), 55 (100),
43 (38). HRMS (80 eV): m/z calcd
for C19H22O4: 314.1518; found:
314.1543. Anal. Calcd for C19H22O4 (314.4):
C, 72.59; H, 7.05. Found: C, 71.81; H, 6.97.
Compound 5
To
a solution of 4 (0.205 g, 0.655 mmol) in
CH2Cl2 (13 mL) mesyl chloride (0.082 g, 0.723
mmol, dissolved in 2 mL of CH2Cl2) and Et3N
(0.658 g, 6.55 mmol) were added at 0 ˚C. The solution
was warmed up to r.t. and stirred for additional 2.5 h. Then, sat.
aq NH4Cl solution (5 mL) was added and the phases were
separated. The organic phase was successively washed with H2O
(3 × 5 mL) and brine (1 × 5
mL) and dried (Na2SO4). Purification of the
crude product by chromatography on alumina (hexane-EtOAc,
4:1) provided 5 (0.186 g, 96%)
as an orange resin. ¹H NMR (250 MHz, CDCl3): δ = 1.55,
1.92 (AB system, J
AB = 10.5
Hz, 2 H, CH2), 2.43, 2.65, 2.86, 2.93 (4 br s, 2 H each,
8 CH), 3.46 (s, 6 H, OMe), 5.51 (s, 4 H, =CH2). ¹³C
NMR (62.9 MHz, CDCl3): δ = 198.7
(s, C=C=CH2),
132.0 (s, =C=COMe), 91.1
(t, =C=CH2),
95.1 (s, C-3, C-5), 56.4 (q, OMe), 57.3, 47.4, 44.3, 41.0 (4 d,
CH), 43.3 (t, CH2). IR (neat): 3010-2860 (CH),
1930 (C=C=C) cm-¹.
MS (EI, 80 eV): m/z (%) = 296
(100) [M]+, 281 (29) [M - CH3]+,
265 (12) [M - OMe]+,
227 (15), 145 (18), 115 (15). HRMS (80 eV): m/z calcd
for C19H20O3: 296.1412; found:
296.1442.
Ozonolysis of
Bisallenyl-Substituted Compound 5
To a solution of 5 (0.37 g, 1.25 mmol) in MeOH (30 mL) argon
was bubbled for 5 min with cooling to -78 ˚C.
Then, the solution was treated with ozone until the solution remained
blue for 20 min, followed by oxygen for 5 min. The reaction mixture
was allowed to warm to r.t. within 1 h and the solvent was evaporated
in vacuo. Purification of the crude product by chromatography (alumina,
hexane-EtOAc, 4:1, 1:1 to 0:1) afforded diester 7 (0.080 g, 23%) as colorless crystals
and methyl ketone 8 (0.033 g, 10%)
as a pale yellow oil.
Diester 7:
mp 134-136 ˚C. ¹H NMR (250
MHz, CDCl3): δ = 1.66,
2.04 (AB system, J
AB = 11
Hz, 2 H, CH2), 2.60-2.88, 3.00-3.15
(2 m, 4 H each, 8 CH), 3.80 (s, 6 H, CO2Me). ¹³C
NMR (62.9 MHz, CDCl3): δ = 43.2
(t, CH2), 42.1, 45.2, 49.2, 58.6 (4 d, CH), 52.2 (q,
OMe), 94.7 (s, C-3, C-5), 170.7 (s, CO2Me).
IR (KBr): 2990-2840 (CH), 1720 (C=O) cm-¹. MS
(EI, 80 eV): m/z (%) = 276
(2) [M]+, 245 (4) [M - OMe]+,
218 (15), 217 (100) [M - CO2Me]+.
HRMS (80 eV): m/z calcd for
C15H16O5: 276.0998; found: 276.0978.
Methyl
ketone 8: ¹H NMR (250
MHz, CDCl3): δ = 1.52, 1.89
(AB system, J
AB = 11
Hz, 2 H, CH2), 2.27 (s, 3 H, Me), 2.32 (mc,
1 H, CH), 2.62-2.67, 2.71-2.76 (2 m, 2 H, 1 H,
3 CH), 2.77-2.81, 2.84-2.88, 2.94-2.99,
3.08-3.13 (4 m, 1 H each, CH), 3.27, 3.32 (2 s, 3 H each,
OMe), 3.73 (s, 3 H, CO2Me). ¹³C
NMR (62.9 MHz, CDCl3): δ = 28.2
(q, Me), 43.1 (t, CH2), 41.6, 42.1, 44.7, 45.6, 46.0,
49.0, 55.9, 58.9 (8 d, CH), 51.4, 51.7, 52.0 (3 q, OMe), 94.2, 98.7,
102.8 [3 s, C(OMe)2,
C-3, C-5], 171.5 (s, CO2Me),
205.9 (s, COMe). MS (FAB+,
80 eV): m/z (%) = 357
(4) [M + Na]+, 335
(3) [MH]+, 304 (18), 303 (85),
291 (100) [M - MeCO]+,
154 (17), 137 (25), 136 (19), 105 (21), 81 (26), 69 (34), 55 (49), 43
(47).
It should be noted that the yield of 11 may be enhanced by a template-directed reaction of 9 and 10 (e.g., by the use of a Cs salt). See also ref. 15.
30
Reaction of 9
and 10
To a suspension of NaH (4 mg, 0.16 mmol) in
THF (1 mL) were added a solution of 9 (18
mg, 0.08 mmol, dissolved in 5 mL of THF) and a solution of 10 (43 mg, 0.08 mmol, dissolved in 10 mL
of THF) over a period of 30 min. The reaction mixture was refluxed
for 84 h and after cooling to r.t. H2O (10 mL) was added,
and the phases were separated. The aqueous phase was extracted with
CH2Cl2 (3 × 20
mL) and the combined organic phases were dried with MgSO4. Purification
of the crude product by chromatography (SiO2, hexane-EtOAc,
4:1, 1:1, then 1:3) gave product 11 (3
mg, 7%) as a pale yellow resin and starting material 10 (5 mg, 12%).
Product 11: [α]D = 6.7
(c 0.08, CHCl3). ¹H
NMR (250 MHz, CDCl3): δ = 0.83,
0.87 (2 d, J = 10
Hz, 1 H each, CH2), 0.99-1.80 (m, 8 H, CH),
3.25-4.55 (m, 12 H, OCH2), 7.05-7.35
(m, 6 H, Ar), 7.40 (d, J = 8
Hz, 2 H, Ar), 7.85 (d, J = 2 Hz,
2 H, Ar), 7.97 (d, J = 2
Hz, 2 H, Ar). MS (EI, 80 eV, 240 ˚C): m/z (%) = 558
(6) [M]+, 356 (10), 327 (10),
284 (13), 269 (18), 268 (14), 239 (14), 129 (12), 123 (23), 113 (10),
111 (16), 109 (12), 105 (10), 99 (14), 97 (24), 96 (18), 91 (35),
85 (24), 83 (30), 82 (18), 74 (29), 72 (35), 55 (53), 44 (23), 43
(100) [MeCO]+, 41 (47), 26
(43). HRMS (80 eV): m/z calcd
for C37H34O5: 558.24060; found:
558.24255.