RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078053
Synthesis of 3-Fluoro-2,5-Disubstituted Furans and Further Derivative Reactions to Access Fluorine-Containing 3,3′-Bifurans and Tetrasubstituted Furans
Publikationsverlauf
Publikationsdatum:
12. September 2008 (online)
Abstract
2,5-Disubstituted 3-fluorofurans were synthesized in 42-99% yield via DBU-promoted cyclization reactions of electron-deficient gem-difluorohomopropargyl alcohols. Starting from these compounds, a series of fluorinated 3,3′-bifurans and tetrasubstituted furans were also prepared through a fluorine-directed ortho-functionalization process.
Key words
fluorinated furans - neighboring-group effects - cyclization reaction - DBU - coupling
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Fraga BM. Nat. Prod. Rep. 1992, 9: 21 -
1b
Natural Products
Chemistry
Vol. 1:
Nakanishi K.Goto T.Ito S.Natori S.Nozoe S. Kodansha; Tokyo: 1974. -
1c
Natural
Products Chemistry
Vol. 2:
Nakanishi K.Goto T.Ito S.Natori S.Nozoe S. Kodansha; Tokyo: 1974. -
1d
Natural
Products Chemistry
Vol. 3:
Nakanishi K.Goto T.Ito S.Natori S.Nozoe S. Kodansha; Tokyo: 1974. -
1e
Sargent M.Dean FM. In Comprehensive Heterocyclic Chemistry Vol. 3:Bird CW.Cheeseman GWH. Pergamon Press; Oxford: 1984. p.599-656 -
1f
Lipshutz BH. Chem. Rev. 1986, 86: 795 -
2a
Paquette LA.Astles PC. J. Org. Chem. 1993, 58: 165 -
2b
Jacobi PA.Touchette KM.Selnick HG.
J. Org. Chem. 1992, 57: 805 -
2c
Paquette LA.Doherty AM.Rayner CM. J. Am. Chem. Soc. 1992, 114: 3910 -
3a
Hou XL.Cheung HY.Hon TY.Kwan PL.Lo TH.Tong SY.Wong HNC. Tetrahedron 1998, 54: 1955 -
3b
Keay BA. Chem. Rev. 1999, 28: 209 -
3c
Zhang LZ.Chen CW.Lee CF.Wu CC.Luh TY. Chem. Commun. 2002, 2336 -
3d
Dudnik AS.Georgyan V. Angew. Chem. Int. Ed. 2007, 46: 5195 - 4
Ram RN.Kumar N. Tetrahedron Lett. 2008, 49: 799 - 5
Duan X.-H.Liu X.-Y.Guo L.-N.Liao M.-C.Liu W.-M.Liang Y.-M. J. Org. Chem. 2005, 70: 6980 - 6
Yao T.Zhang X.Larock RC. J. Am. Chem. Soc. 2004, 126: 11164 -
7a
Kirsch P. Modern Fluoroorganic Chemistry Wiley-VCH; Weinheim, Germany: 2004. -
7b
LargeRadix S.Billard T.Langlois BR. J. Fluorine Chem. 2003, 124: 147 -
7c
Stahly GP.Bell DR. J. Org. Chem. 1989, 54: 2873 -
7d
Thayer AM. Chem. Eng. News 2006, 5: 15 - 8
Arimitsu S.Hammond GB. J. Org. Chem. 2007, 72: 8559 -
9a
Xu W.Chen Q.-Y. Org. Biomol. Chem. 2003, 1: 1151 -
9b
Lee K.Zhou W.Kelley L.-LC.Momany C.Chu CK. Tetrahedron: Asymmetry 2002, 13: 1589 -
9c
Moon HR.Kim HO.Jeong LS. J. Chem. Soc., Perkin Trans. 1 2002, 1800 -
9d
Qing F.-L.Gao W.-Z.Ying J. J. Org. Chem. 2000, 65: 2003 -
9e
Forrest AK.Ohanlon PJ. Tetrahedron Lett. 1995, 36: 2117 ; and references cited therein - 10
Sham H.-L.Betebenner D.-A. J. Chem. Soc., Chem. Commun. 1991, 73: 1134 - For a recent review, see:
-
11a
Schlosser M.Mongin F. Chem. Soc. Rev. 2007, 36: 1161 - For recent examples, see:
-
11b
Heiss C.Marzi E.Mongin F.Schlosser M. Eur. J. Org. Chem. 2007, 669 -
11c
Bobbio C.Schlosser M. J. Org. Chem. 2005, 70: 3039 -
11d
Schirok H.Figueroa-Pérez S.Thutewohl M.Paulsen H.Kroh W.Klewer D. Synlett 2007, 251 - For reviews on the synthesis of biaryl compounds, see:
-
13a
Bringmann G.Mortimer AJP.Keller PA.Gresser MJ.Garner J.Breuning M. Angew. Chem. Int. Ed. 2005, 44: 5384 -
13b
Hassan J.Sévignon M.Gossi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 - For examples of the use of the copper(I) salt-O2 combination in this field, see:
-
13c
Li X.Hewgley JB.Mulrooney CA.Yang J.Kozlowski MC. J. Org. Chem. 2003, 68: 5500 -
13d
Lin G.-Q.Zhong M. Tetrahedron: Asymmetry 1997, 8: 1369 -
13e
Lipshutz BH.Kayser F.Liu Z.-P. Angew. Chem., Int. Ed. Engl. 1994, 33: 1962 -
13f
Lipshutz BH.Siegmann K.Garcia E.Kayser F. J. Am. Chem. Soc. 1993, 115: 9276 -
14a
Jeevanandam A.Narkunan K.Ling Y.-C. J. Org. Chem. 2001, 66: 6014 -
14b
Hou X.-L.Cheung HY.Hon TY.Kwan PL.Lo TH.Tong SY.Wong HNC. Tetrahedron 1998, 54: 1955 -
14c
Luo FT.Bajji AC.Jeevanandam A. J. Org. Chem. 1999, 64: 1738 -
17a
Sniady A.Wheeler KA.Dembinski R. Org. Lett. 2005, 7: 1769 -
17b
Sauers RR.Van Arnum SD. J. Comb. Chem. 2004, 6: 350 -
17c
Srinivasan A.Reddy VRM.Narayanan SJ.Sridevi B.Pushpan SK.Ravikumar M.Chandrashekar TK. Angew. Chem., Int. Ed. Engl. 1997, 36: 2598
References and Notes
Typical Procedure
for the Synthesis of 2c from 1c: To a solution of 1c (337 mg, 1 mmol) in anhyd THF (3 mL)
was added DBU (3 equiv, 0.45 mL), and the mixture was stirred at
60 ˚C for 8 h. Then the reaction was quenched with H2O (2
mL), and the aqueous layer was extracted with EtOAc. The organic
layer was washed with brine and dried over anhyd Na2SO4.
After evaporation of the solvent under reduced pressure, the crude
product was purified by column chromatography on silica gel to afford 2c as a white solid (279 mg, 88%).
2c: mp 95-96 ˚C. IR:
1631, 1598, 1490, 1430, 1397, 1075, 922, 691 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.67-7.75 (m,
4 H), 7.10-7.44 (m, 5 H), 6.66 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 150.7 (d, ¹
J
CF = 256.0 Hz),
150.5 (d,
³
J
CF = 8.2
Hz), 134.9 (d, ²
J
CF = 20.1
Hz), 131.8, 130.0, 128.7, 128.2, 127.7 (d, ³
J
CF = 5.2 Hz), 124.8
(d, 4
J
CF = 5.2
Hz), 123.7, 120.6, 99.2 (d, ²
J
CF = 20.1
Hz). ¹9F NMR (282 MHz, CDCl3, CFCl3 as
the external standard): δ = -160.4 (s). LRMS: m/z (%) = 316
(100) [M+], 318 (98.47) [M+ + 2],
319 (17.59), 209 (21.35), 207 (14.17), 189 (14.46), 159 (14.64), 133
(27.90). Anal. Calcd for C16H10BrFO (315.99):
C, 60.59; H, 3.18. Found: C, 60.40; H, 3.37.
Typical Procedure
for the Synthesis of 3b from 2b: Under an atmosphere of argon, n-butyllithium (0.63 mL, 1.0 mmol) was
added dropwise to a stirred solution of 2b (136
mg, 0.5 mmol) in THF (3 mL) at -78 ˚C. Then the
reaction mixture was stirred for 40 min at this temperature before
CuBr (81 mg, 0.60 mmol) was added and stirred for another 40 min. Then
the system was equipped with an oxygen balloon and was allowed to
warm to r.t. (the reaction solution slowly turned black during this
process). After 8 h, 1.0 N HCl (2 mL) was added to quench the reaction
and the aqueous layer was extracted with CH2Cl2 and
dried over Na2SO4. The crude product was purified
by column chromatography on silica gel to afford 3b as
a white solid (64 mg, 47%).
3b:
mp 177-178 ˚C. IR: 3143, 1636, 1492, 1400, 919,
824, 687 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.60-7.70
(m, 8 H), 7.42-7.45 (m, 4 H), 7.26-7.36 (m, 6
H). ¹³C NMR (100 MHz, CDCl3): δ = 148.8
(d, ¹
J
CF = 257.0
Hz), 147.7 (d,
³
J
CF = 9.0
Hz), 135.2 (d, ²
J
CF = 18.6
Hz), 133.1, 129.9, 129.1, 128.8, 128.7, 127.0, 126.9, 124.9, 103.2
(d, ²
J
CF = 15.6
Hz). ¹9F NMR (282 MHz, CDCl3, CFCl3 as
the external standard): δ = -160.8 (s).
LRMS: m/z (%) = 542
(100) [M+], 543 (42.97), 544
(72.01), 545 (25.67), 546 (14.78), 383 (15.56), 338 (6.20), 320
(12.79). HRMS: m/z calcd for C32H18Cl2F2O2:
542.0652; found: 542.0661.
Typical Procedure
for the Synthesis of 4a from 2a: Under an atmosphere of argon, n-butyllithium (0.38 mL, 0.6 mmol) was
added dropwise to a stirred solution of 2a (119
mg, 0.5 mmol) in THF (3 mL) at -78 ˚C. Then the
reaction mixture was stirred for 40 min at this temperature before
benzal-dehyde (64 mg, 0.6 mmol) was added and the system was allowed
to warm to r.t. After disappearance of the substrate benzaldehyde
(monitored by TLC), the reaction was quenched with sat. NH4Cl.
The aqueous layer was extracted with EtOAc and dried over Na2SO4.
The crude product was purified by column chromatography on silica
gel to afford 4a as a colorless oil (122
mg, 71%).
4a: IR: 3366,
3059, 1640, 1495, 1437, 1170, 1015, 839, 693 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.54-7.76
(m, 6 H), 7.30-7.44 (m, 9 H), 6.13 (d, J = 6.0
Hz, 1 H), 2.44 (d, J = 6.0 Hz,
1 H). ¹³C NMR (100 MHz, CDCl3): δ = 148.8
(d, ¹
J
CF = 260.0
Hz), 147.1 (d, ³
J
CF = 7.0
Hz), 135.9 (d, ²
J
CF = 18.7
Hz), 141.5, 130.1, 128.7, 128.5, 127.8, 127.2, 126.6, 126.1, 123.6,
123.5, 116.0 (d, ²
J
CF = 13.4
Hz), 67.7. ¹9F NMR (282 MHz, CDCl3,
CFCl3 as the external standard): δ = -161.7
(s). LRMS: m/z (%) = 344
(100) [M+], 105 (48.91), 77
(41.89), 345 (27.06), 133 (11.84), 267 (11.09), 79 (9.95), 189 (7.16). HRMS: m/z calcd
for C23H17FO2: 344.1206; found: 344.1213.