Synlett 2008(16): 2513-2517  
DOI: 10.1055/s-2008-1078178
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Silver(I) versus Gold(I) Catalysis in Benzannulation Reaction: A Versatile Access to Acridines

Thomas Godet, Philippe Belmont*
Laboratoire de Synthèse et Méthodologie Organiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon 1, CNRS, UMR 5246, Bâtiment CPE, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Fax: +33(4)72432963; e-Mail: philippe.belmont@univ-lyon1.fr;
Further Information

Publication History

Received 4 June 2008
Publication Date:
10 September 2008 (online)

Abstract

A silver/gold-catalysed benzannulation reaction is described. In the presence of catalytic amounts of gold and/or silver salts, the reaction of silyl enol ethers onto alkynes occurs under mild conditions to produce the corresponding polycyclic aromatic systems (acridine, quinoline or naphthalene cores) in good to high yields. Among the catalysts investigated, AgOTf has been chosen as a general catalyst for this reaction which likely proceeds through silver(I) activation of the alkynyl moiety leading to a subsequent cycloisomerisation reaction.

    References and Notes

  • 1 Martin RE. Diederich F. Angew. Chem. Int. Ed.  1999,  38:  1350 
  • 2 Zaumseil J. Sirringhaus H. Chem. Rev.  2007,  107:  1296 
  • 3 Thomas SW. Joly GD. Swager TM. Chem. Rev.  2007,  107:  1339 
  • 4 Le pecq J.-B. Paoletti C. J. Mol. Biol.  1967,  27:  87 
  • 5 Belmont P. Bosson J. Godet T. Tiano M. Anti-Cancer Agents Med. Chem.  2007,  7:  139 
  • 6 Asche C. Demeunynck M. Anti-Cancer Agents Med. Chem.  2007,  7:  247 
  • For selected examples and their synthesis, see:
  • 7a de Koning CB. Rousseau AL. van Otterlo WAL. Tetrahedron  2003,  59:  7 
  • 7b Charest MG. Siegel DR. Myers AG. J. Am. Chem. Soc.  2005,  127:  8292 
  • 8 For a recent review, see: Mital A. Curr. Med. Chem.  2007,  14:  759 
  • For reviews, see:
  • 9a Saito S. Yamamoto Y. Chem. Rev.  2000,  100:  2901 
  • 9b Rubin M. Sromek AW. Gevorgyan V. Synlett  2003,  2265 
  • 9c Kotha S. Brachmachary E. Lahiri K. Eur. J. Org. Chem.  2005,  4741 
  • 9d Belmont P. In Modern Approaches to the Synthesis of O- and N-Heterocycles   Vol. 2:  Kaufman TS. Larghi EL. Research Signpost; Kerala, India: 2007.  Chap. 8. p.247-261  
  • 10a For a camphorsulfonic acid activation, see: Ciufolini MA. Weiss TJ. Tetrahedron Lett.  1994,  35:  1127 
  • 10b For a trifluoromethanesulfonic acid activation, see: Li A. Kindelin PJ. Klumpp DA. Org. Lett.  2006,  8:  1233 
  • 11a For a EtAlCl2 activation, see: Imamura K.-I. Yoshikawa E. Gevorgyan V. Yamamoto Y. Tetrahedron Lett.  1999,  40:  4081 
  • 11b For an ICl activation, see: Yao T. Campo MA. Larock RC. Org. Lett.  2004,  6:  2677 
  • 11c For an I(py)2BF4 activation, see: Barluenga J. Vazquez-Villa H. Merino I. Ballesteros A. Gonzalez JM. Chem. Eur. J.  2006,  12:  5790 
  • 12a Makra F. Rohloff JC. Muehldorf AV. Link JO. Tetrahedron Lett.  1995,  36:  6815 
  • 12b Deville JP. Behar V. Org. Lett.  2002,  4:  1403 
  • 12c Dai W. Petersen JL. Wang KK. J. Org. Chem.  2005,  70:  6647 
  • 12d Serra S. Fuganti C. Synlett  2005,  809 
  • 12e Patra A. Ghorai SK. De S R. Mal D. Synthesis  2006,  2556 
  • 12f Birman VB. Zhao Z. Guo L. Org. Lett.  2007,  9:  1223 
  • 12g Zhou Q.-F. Yang F. Guo Q.-X. Xue S. Synlett  2007,  215 
  • 12h Drochner D. Müller M. Eur. J. Org. Chem.  2001,  211 
  • 13a Li H. Zhang H.-R. Petersen JL. Wang KK. J. Org. Chem.  2001,  66:  6662 
  • 13b Lewis KD. Matzger AJ. J. Am. Chem. Soc.  2005,  127:  9968 
  • 14 Austin WF. Zhang Y. Danheiser RL. Org. Lett.  2005,  7:  3905 
  • 15 Dankwardt JW. Tetrahedron Lett.  2001,  34:  5809 
  • 16 Novak P. Pohl R. Kotora M. Hocek M. Org. Lett.  2006,  8:  2051 
  • 17a Shen H.-C. Tang J.-M. Chang H.-K. Yan C.-W. Liu R.-S. J. Org. Chem.  2005,  70:  10113 
  • 17b Lin M.-Y. Maddirala SJ. Liu R.-S. Org. Lett.  2005,  7:  1745 
  • 17c Yamamoto Y. Hattori K. Nishiyama H. J. Am. Chem. Soc.  2006,  128:  8336 
  • 18a Xi C. Chen C. Lin J. Hong X. Org. Lett.  2005,  7:  347 
  • 18b Pena D. Pérez D. Guitian E. Castedo L. Eur. J. Org. Chem.  2003,  1238 
  • 18c Kawasaki S. Satoh T. Miura M. Nomura M. J. Org. Chem.  2003,  68:  6836 
  • 18d Tsukada N. Sugawara S. Nakaoka K. Inoue Y. J. Org. Chem.  2003,  68:  5961 
  • 18e Rubina M. Conley M. Gevorgyan V. J. Am. Chem. Soc.  2006,  128:  5818 
  • 18f Ohno H. Yamamoto M. Iuchi M. Tanaka T. Angew. Chem. Int. Ed.  2005,  44:  5103 
  • 18g Ohno H. Iuchi M. Fujii N. Tanaka T. Org. Lett.  2007,  9:  4813 
  • For selected examples, see:
  • 19a For an account, see: Asao N. Synlett  2006,  1645 
  • 19b Hashmi ASK. Frost TM. Bats JW. J. Am. Chem. Soc.  2000,  122:  11553 
  • 19c Hashmi ASK. Wölfle M. Ata F. Hamzic M. Salathé R. Frey W. Adv. Synth. Catal.  2006,  348:  2501 
  • 19d Grisé CM. Barriault L. Org. Lett.  2006,  8:  5905 
  • 19e Hildebrandt D. Dyker G. J. Org. Chem.  2006,  71:  6728 
  • 19f Lian J.-J. Liu R.-S. Chem. Commun.  2007,  1337 
  • 20a Vollhardt KPC. Acc. Chem. Res.  1977,  10:  1 
  • 20b Chouraqui G. Petit M. Aubert C. Malacria M. Org. Lett.  2004,  6:  1519 
  • 20c Goswami A. Ito T. Okamoto S. Adv. Synth. Catal.  2007,  349:  2368 
  • 21 Mamane V. Hannen P. Fürstner A. Chem. Eur. J.  2004,  10:  4556 
  • 23a

    For an account, see ref. 16.

  • 23b Asao N. Aikawa H. J. Org. Chem.  2006,  71:  5249 
  • 23c Bull JA. Hutchings MG. Quayle P. Angew. Chem. Int. Ed.  2007,  46:  1869 
  • 24 Zhao J. Hughes CO. Toste FD. J. Am. Chem. Soc.  2006,  128:  7436 
  • 25a Dunetz JR. Danheiser RL. J. Am. Chem. Soc.  2005,  127:  5776 
  • 25b Pigge FC. Ghasedi F. Schmitt AV. Dighe MK. Rath NP. Tetrahedron  2005,  61:  5363 
  • 25c Martinez-Esperon MF. Rodriguez D. Castedo L. Saà C. Org. Lett.  2005,  7:  2213 
  • 25d Pearson AJ. Kim JB. Tetrahedron Lett.  2003,  44:  8525 
  • 26 Bajbak M. Kanazawa A. Anderson RJ. Greene AE. Org. Biomol. Chem.  2006,  4:  407 
  • For selected examples, see:
  • 27a For a review on the Dötz benzannulation, see: Dötz KH. Tomuschat P. Chem. Soc. Rev.  1999,  28:  187 
  • 27b Zhang Y. Candelaria D. Herndon JW. Tetrahedron Lett.  2005,  46:  2211 
  • 27c Merlic CA. Burns EE. Xu D. Chen SY. J. Am. Chem. Soc.  1992,  114:  8722 
  • 27d Merlic CA. Aldrich CC. Albaneze-Walker J. Saghatelian A. Mammen J. J. Org. Chem.  2001,  66:  1297 
  • 27e Merlic CA. Xu D. Gladstone BG. J. Org. Chem.  1993,  58:  538 
  • 27f Gupta A. Sen S. Harmata M. Pulley SR. J. Org. Chem.  2005,  70:  7422 
  • 28a Maeyama K. Iwasawa N. J. Am. Chem. Soc.  1998,  120:  1928 
  • 28b Maeyama K. Iwasawa N. J. Org. Chem.  1999,  64:  1344 
  • 28c Iwasawa N. Shido M. Maeyama K. Kusama H. J. Am. Chem. Soc.  2000,  122:  10226 
  • 29 Landis CA. Payne MM. Eaton DL. Anthony JE. J. Am. Chem. Soc.  2004,  126:  1338 
  • 30 Murakami M. Kadowaki S. Fujimoto A. Ishibashi M. Matsuda T. Org. Lett.  2005,  7:  2059 
  • 31 Deaton KR. Gin MS. Org. Lett.  2003,  5:  2477 
  • For recent reviews, see:
  • 32a Muzart J. Tetrahedron  2008,  64:  5815 
  • 32b Jimenez-Nunez E. Echavarren AM. Chem. Commun.  2007,  333 
  • 32c Fürstner A. Davies PW. Angew. Chem. Int. Ed.  2007,  46:  3410 
  • 32d Gonin DJ. Toste FD. Nature (London)  2007,  446:  395 
  • 32e Hashmi AS. Chem. Rev.  2007,  107:  3180 
  • For selected examples, see:
  • 32f Zhang LM. Sun JW. Kozmin SA. Adv. Synth. Catal.  2006,  348:  2271 
  • 32g Genin E. Leseurre L. Toullec P.-Y. Genet J.-P. Michelet V. Synlett  2007,  1780 
  • 32h Kirsch SF. Binder JT. Liébert C. Menz H. Angew. Chem. Int. Ed.  2006,  45:  5878 
  • 32i Buzas AK. Istrate FM. Gagosz F. Angew. Chem. Int. Ed.  2006,  45:  1 
  • 32j Barluenga J. Diéguez A. Fernandez A. Rodriguez F. Fananas FJ. Angew. Chem. Int. Ed.  2006,  45:  2091 
  • 32k Morita N. Krause N. Angew. Chem. Int. Ed.  2006,  45:  1897 
  • 32l Marion N. Diez-Gonzalez S. de Frémont P. Noble AR. Nolan SP. Angew. Chem. Int. Ed.  2006,  45:  3647 
  • 32m Liu C. Widenhoefer RA. Org. Lett.  2007,  9:  1935 
  • 32n Lemière G. Gandon V. Agenet N. Goddard J.-P. de Kozak A. Aubert C. Fensterbank L. Malacria M. Angew. Chem. Int. Ed.  2007,  46:  7596 
  • 32o Gonzalez-Arellano C. Abad A. Corma A. Garcia H. Iglesias M. Sanchez F. Angew. Chem. Int. Ed.  2007,  46:  1 
  • 33 Belmont P. Andrez JC. Allan CSM. Tetrahedron Lett.  2004,  13:  2783 
  • For a tutorial review, please see:
  • 35a Wang C. Xi Z. Chem. Soc. Rev.  2007,  36:  1395 
  • 35b Nieto-Oberhuber C. Munoz MP. Bunuel E. Nevado C. Cardenas DJ. Echavarren AM. Angew. Chem. Int. Ed.  2004,  43:  2402 
  • 35c Robles-Machwin R. Adrio J. Carretero JC. J. Org. Chem.  2006,  71:  5023 
  • 35d Lee SI. Kim SM. Choi MR. Kim SY. Chung YK. J. Org. Chem.  2006,  71:  9366 
  • 35e Mamane V. Gress T. Krause H. Fürstner A. J. Am. Chem. Soc.  2004,  126:  8654 
  • 35f

    See ref. 32.

  • For selected examples, see:
  • 36a For a review, please see: Halbes-Letinois U. Weibel J.-M. Pale P. Chem. Soc. Rev.  2007,  759 
  • 36b Menz H. Kirsch SF. Org. Lett.  2006,  8:  4795 
  • 36c Porcel S. Echavarren AM. Angew. Chem. Int. Ed.  2007,  46:  2672 
  • 36d Li Z. Capretto DA. Rahaman R. He C. Angew. Chem. Int. Ed.  2007,  46:  5184 
  • 36e Lingaiah N. Babu NS. Reddy KM. Prasad PSS. Suryanarayama I. Chem. Commun.  2007,  278 
  • 36f Yamada W. Sugawara Y. Cheng HM. Ikeno T. Yamada T. Eur. J. Org. Chem.  2007,  2604 
  • 36g Oh CH. Yi HJ. Lee JH. New J. Chem.  2007,  31:  835 
  • 36h Harrison TJ. Kozak JA. Corbella-Pane M. Dake GR. J. Org. Chem.  2006,  71:  4525 
  • 36i Arcadi A. Alfonsi M. Marinelli F. J. Organomet. Chem.  2007,  692:  5322 
  • 36j Sweis RF. Schramm MP. Kozmin SA. J. Am. Chem. Soc.  2004,  126:  7442 
  • 36k Asao N. Yudha S. S. Nogami T. Yamamoto Y. Angew. Chem. Int. Ed.  2005,  44:  5526 
  • 36l Driver TG. Woerpel KA. J. Am. Chem. Soc.  2004,  126:  9993 
  • 36m Li Z. Capretto DA. Rahaman R. He C. Angew. Chem. Int. Ed.  2007,  46:  5184 
  • 36n Cui Y. He C. J. Am. Chem. Soc.  2003,  125:  16202 
  • 36o Ding Q. Wu J. Org. Lett.  2007,  9:  4959 
  • 36p

    See ref. 38

  • 38 Godet T. Vaxelaire C. Michel C. Milet A. Belmont P. Chem. Eur. J.  2007,  13:  5632 
  • 39a Fétizon M. Parker KA. Su D.-S. In Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents   Paquette LA. Burke SD. Danheiser RL. Wiley; New York: 1999.  p.361-366  
  • 39b Fétizon M. Parker KA. Su D.-S. In Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents   Paquette LA. Burke SD. Danheiser RL. Wiley; New York: 1999.  p.368-372  
  • 39c Yamamoto Y. J. Org. Chem.  2007,  72:  7817 
  • 40 Medina JC. Goodnow TT. Rojas MT. Atwood JL. Lynn BC. Kaifer AE. Gokel GW. J. Am. Chem. Soc.  1992,  114:  10583 
  • 41 Zanello P. In Ferrocenes   Togni A. Hayashi T. Wiley-VCH; Weinheim, Germany: 1995.  p.317-430  
  • 42 Silver-catalysed deprotection of silyl alcohols has already been reported. See for instance: Orsini A. Vitérisi A. Bodlenner A. Weibel J.-M. Pale P. Tetrahedron Lett.  2005,  46:  2259 
22

See ref. 18.

34

To our knowledge the only related example can be found in the work of Dankwardt, where he used AuCl3 (10 mol%) in toluene at 100 ˚C (Scheme  [5] ). See ref. 15.

37

In ref. 15, Dankwardt reported the use of 1.1 equivalents of AgCO2CF3 in nitromethane at r.t.

43

Typical Procedure: To a flask charged with silyl enol ether quinoline (0.1 mmol) [44] dissolved in anhyd 1,2-dichloro-ethane (10 mL), was added silver catalyst (5 mol%). The reaction mixture was stirred at 50 ˚C until the reaction was judged complete by TLC analysis (0.5-2 h). The crude mixture was dissolved in CH2Cl2 and washed with a sat. aq solution of NaHCO3 (3 ×). The organic phase was dried over Na2SO4, filtered and the solvents were removed in vacuo. If needed, the residue was loaded on a silica gel column and elution with the appropriate mixture of cyclohexane and EtOAc yielded the pure cyclised products.
Selected spectroscopic data for entry 8, Table  [³] : isolated as a yellow oil (97%). ¹H NMR (300 MHz, CDCl3, 25 ˚C): δ = 9.04 (s, 1 H), 8.20 (app d, ³ J H,H = 8.8 Hz, 1 H), 8.02 (app d, ³ J H,H = 8.3 Hz, 1 H), 7.77 (s, 1 H), 7.77 (ddd, ³ J H,H = 8.7, 6.7 Hz, 4 J H,H = 1.4 Hz, 1 H), 7.51 (ddd, ³ J H,H = 8.0, 6.6 Hz, 4 J H,H = 0.8 Hz, 1 H), 7.43-7.45 (m, 2 H), 7.34 (t, ³ J H,H = 7.0 Hz, 2 H), 7.26 (m, 1 H), 7.03 (d, 4 J H,H = 1.0 Hz, 1 H), 3.69 (s, 2 H), 3.63 (s, 2 H), 2.26 (s, 3 H), 1.15 (s, 9 H), 0.37 (s, 6 H). ¹³C NMR (75 MHz, CDCl3, 25 ˚C): δ = 151.6, 150.2, 149.2, 143.2, 139.6, 131.8, 130.5, 129.2, 128.9, 128.9, 128.4, 127.1, 126.0, 125.3, 122.3, 121.3, 111.7, 62.2, 62.2, 42.6, 26.1, 18.7, -4.1. MS (ESI+): m/z (%) = 443 (100) [M + H] + . HRMS (CI): m/z calcd for C28H35N2OSi+: 443.2519; found: 443.2522.

44

Silyl enol ether quinolines (Table  [³] ) were prepared following a published procedure. Please see ref. 33.