Synlett 2008(16): 2503-2507  
DOI: 10.1055/s-2008-1078179
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Rapid Access to New Fluorinated 1,3-Dienes and Benzylic Fluorides via Metathesis on Propargylic Fluorides

Sandip A. Pujaria, Krishna P. Kaliappan*a, Alain Valleixb, Danielle Gréec, René Grée*c
a Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
Fax: +91(22)25723480; e-Mail: kpk@chem.iitb.ac.in;
b Euriso-top, Centre d’Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France
c Chimie et Photonique Moléculaires,CNRS UMR 6510, Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
e-Mail: rene.gree@univ-rennes1.fr;
Further Information

Publication History

Received 1 June 2008
Publication Date:
10 September 2008 (online)

Abstract

The cross enyne metathesis reaction of propargylic fluoride (+)-12 with ethylene affords the enantioenriched 1,3-diene (+)-14 having fluorine-containing side chain at 2-position in good yield. Upon Diels-Alder reaction, followed by aromatization, this diene affords the new benzylic fluorides (+)-16 and (+)-17 in high ee values. This new strategy has been successfully extended to the corresponding gem-difluoro diene 21 and benzylic fluorides 23 and 24.

    References and Notes

  • 1a Kitazume T. Yamazaki T. Experimental Methods in Organic Fluorine Chemistry   Gordon and Breach Science Publishers; Tokyo: 1998. 
  • 1b Hudlicky M. Pavlath AE. Chemistry of Organic Fluorine Compounds II: A Critical Review, ACS Monograph 187   American Chemical Society; Washington DC: 1995. 
  • 1c Smart BE. In Organofluorine Chemistry: Principles and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum; New York: 1994.  Chap. 3. p.57-88  ; and references therein
  • 2a Ojima I. McCarthy JR. Welch JT. Biomedical Frontiers in Fluorine Chemistry, ACS Symposium Series 639   American Chemical Society; Washington DC: 1996. 
  • 2b Welch JT. Eswarakrishnan S. Fluorine in Bioorganic Chemistry   Wiley Interscience; New York: 1991. 
  • 2c Welch JT. Tetrahedron  1987,  43:  3123 ; and references therein
  • For recent examples, see:
  • 3a Thibaudeau S. Fuller R. Gouverneur V. Org. Biomol. Chem.  2004,  2:  1110 
  • 3b Hunter L. O’Hagan D. Slawin AMZ. J. Am. Chem. Soc.  2006,  128:  16422 
  • 3c Hunter L. Slawin AMZ. Kirsch P. O’Hagan D. Angew. Chem. Int. Ed.  2007,  46:  7887 
  • 4 See for instance: Prakesch M. Grée D. Grée R. In Fluorine-Containing Synthons, ACS Symposium Series 911   Soloshonok VA. American Chemical Society; Washington DC: 2005.  p.173 ; and references therein
  • 5 Soundararajan R. Li G. Brown HC. J. Org. Chem.  1996,  61:  100 
  • 6a Middleton WJ. J. Org. Chem.  1975,  40:  574 
  • 6b De Jonghe S. Van Overmeire I. Poulton S. Hendrix C. Busson R. Van Calenbergh S. De Keukeleire D. Spiegel S. Herdewijn P. Bioorg. Med. Chem. Lett.  1999,  9:  3175 
  • 7 Grée DM. Kermarrec CJM. Martelli JT. Grée RL. Lellouche JP. Toupet LJ. J. Org. Chem.  1996,  61:  1918 
  • 8 Franck-Neumann M. Martina D. Heitz MP. J. Organomet. Chem.  1986,  301:  61 
  • 9 Hoffmann HMR. Eggert U. Poly W. Angew. Chem. Int. Ed.  1987,  26:  1015 
  • 10a McClinton MA. J. Chem. Soc., Perkin Trans. 1  1992,  2149 
  • 10b Box JM. Harwood LM. Whitehead RC. Synlett  1997,  571 
  • 10c Ohba T. Ikeda E. Takei H. Bioorg. Med. Chem. Lett.  1996,  6:  1875 ; and references therein
  • See, for example:
  • 11a Prakesch M. Grée D. Grée R. Acc. Chem. Res.  2002,  35:  175 
  • 11b Prakesch M. Kerouredan E. Grée D. Grée R. De Chancie J. Houk KN. J. Fluorine Chem.  2004,  125:  537 
  • 11c Manthati V. Grée D. Grée R. Eur. J. Org. Chem.  2005,  3825 
  • 11d Das S. Chandrasekhar S. Yadav JS. Grée R. Tetrahedron Lett.  2007,  48:  5305 
  • 11e Blayo A.-L. Le Meur S. Grée D. Grée R. Adv. Synth. Catal.  2008,  350:  471 
  • 12a Kaliappan KP. Ravikumar V. Org. Biomol. Chem.  2005,  3:  848 
  • 12b Kaliappan KP. Ravikumar V. Pujari SA. Tetrahedron Lett.  2006,  47:  981 
  • 12c Kaliappan KP. Subrahmanyam AV. Org. Lett.  2007,  9:  1121 
  • 12d Kaliappan KP. Ravikumar V. Synlett  2007,  977 
  • For enyne cross-metathesis reactions with ethylene, see:
  • 13a Smulik JA. Diver ST. J. Org. Chem.  2000,  65:  1788 
  • 13b Smulik JA. Diver ST. Org. Lett.  2000,  2:  2271 
  • 13c Tonogaki K. Mori M. Tetrahedron Lett.  2002,  43:  2235 
  • 13d Giessert AJ. Snyder L. Markham J. Diver ST. Org. Lett.  2003,  5:  1793 
  • 14 Smulik JA. Diver ST. Org. Lett.  2000,  2:  2271 
  • 15 Arimitsu S. Fernández B. del Pozo C. Fustero S. Hammond GB. J. Org. Chem.  2008,  73:  2656 
  • 16a Madiot V. Lesot P. Grée D. Courtieu J. Grée R. Chem. Commun.  2000,  169 
  • 16b Filmon J. Grée D. Grée R. J. Fluorine Chem.  2001,  107:  271 
  • 17 Grée D. Grée R. Tetrahedron Lett.  2007,  48:  5435 ; and references therein
  • 18 Sai Krishna Murthy A. Tardivel R. Grée R. In Science of Synthesis   Vol. 34:  Percy JM. Thieme; Stuttgart: 2006.  p.295-317  
19

All our attempts to measure the ee values of the intermediates (+)-14 and (+)-15 by NMR in the presence of chiral shift reagents or by chiral HPLC have been unsuccessful so far. This is a well known problem for such chiral monofluorinated molecules, see for instance ref 16a.

20

General Procedure for Cross Enyne Metathesis: A solution of propargyl fluoride (1 mmol) in degassed CH2Cl2 (10 mL) was purged with ethylene and treated with the Grubbs II catalyst 13 (5 or 10 mol%). The reaction mixture was refluxed for 15 h under ethylene atmosphere. After being cooled to r.t., the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to afford the fluorodiene. Spectral data for diene (+)-14: R f 0.71 (pentane); [α]D ²0 8.0 (c = 0.2, CHCl3). IR (neat): 2927, 1966, 1650, 1456, 1216, 1023, 759 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.28-6.38 (m, 1 H, H2), 5.05-5.31 (m, 5 H, 2 × =CH2, CHF), 1.28-1.52 (m, 14 H, 7 × CH2), 1.72-1.83 (m, 2 H, CH2), 0.90 (t, J = 6.6 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 145.1 (d, J = 17.5 Hz, C3), 135.3 (d, J = 3.9 Hz, C2), 115.0 (d, J = 10.5 Hz, C14), 114.7 (C1), 92.1 (d, J = 171.5 Hz, C4), 34.7 (d, J = 22.6 Hz, CH2CHF), 31.9, 29.5, 29.4, 29.3, 25.1(d, J = 3.5 Hz), 22.7 (6 × d, J = 3.5 Hz, 6 × CH2), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -181.9 (dt, J H-F = 48.7, 23.6 Hz). HRMS: m/z [M]+ calcd for C14H25F: 212.1940; found: 212.1933. Spectral data for diene 21: R f 0.91 (pentane). IR (neat): 2955, 2927, 2855, 1682, 1596, 1467, 1174, 1087, 1004 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.27 (dd, J = 17.7, 11.3 Hz, 1 H, H2), 5.53 (dd, J = 17.7, 1.3 Hz, 1 H, H1), 5.44 (d, J = 5.5 Hz, 2 H, H14), 5.23 (d, J = 11.3 Hz, 1 H, H1), 1.91-2.07 (m, 2 H, CH2), 1.22-1.45 (m, 14 H, 7 × CH2), 0.91 (t, J = 6.8 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 142.5 (t, J = 24.2 Hz, C3), 132.6 (t, J = 2.8 Hz, C2), 122.4 (t, J = 242.4 Hz, C4), 117.3 (t, J = 1.4 Hz, C1), 116.3 (t, J = 9.5 Hz, C14), 36.5 (t, J = 26.1 Hz, CH2CF2), 31.8, 29.4, 29.3, 29.27, 29.23, 22.6, 22.3 (t, J = 4.3 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -97.44 (t, J H-F = 16.6 Hz). HRMS: m/z [M]+ calcd for C14H24F2: 230.1846; found: 230.1846.

21

General Procedure for Diels-Alder Reaction with Diethyl Acetylenedicarboxylate Followed by Aromatization: A mixture of diene (1 mmol) and diethyl acetylenedicarboxylate (1.2 mmol) was heated at 60 ˚C in an oil bath for 3 h. After bringing the mixture to r.t., the crude material was purified by silica gel column chromatography to give the cycloadduct. To a solution of the above cycloadduct (1 mmol) in CH2Cl2 (40 mL) was added MnO2 (10 mmol) and the mixture was refluxed for 2 d. After being cooled to r.t., the reaction mixture was passed through a small pad of celite and the filtrate was concentrated and purified by flash column chromatography on silica gel to afford the corresponding aromatized product.

22

General Procedure for One-Pot Diels-Alder Reaction with 1,4-Naphthaquinone and Aromatization: A solution of diene (1 mmol) in anhyd toluene (15 mL) was treated with 1,4-naphthaquinone (1.2 mmol) and the resulting mixture was heated at 70 ˚C for 2 d. The solvent was removed and the crude product was dissolved in CHCl3 (4 mL). To this solution silica gel purged in Et3N (2 g) was added and the mixture was stirred for another 3 h at r.t. The reaction mixture was concentrated and the crude material was purified by column chromatography to afford the corresponding aromatized adducts.

23

Spectral data for selected compounds: Compound (+)-16: R f 0.30 (pentane-Et2O, 9:1); [α]D ²0 14.8 (c = 0.2, CHCl3). IR (neat): 3020, 1966, 1731, 1650, 1216, 1045, 758 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.75 (d, J = 8.0 Hz, 1 H, H6), 7.65 (s, 1 H, H3), 7.49 (dd, J = 8.0, 1.6 Hz, 1 H, H5), 5.55 (ddd, J = 47.7, 8.0, 4.7 Hz, 1 H, CHF), 4.35-4.43 (m, 4 H, 2 × CH2), 1.87-1.91 (m, 2 H, CH2), 1.19-1.44 (m, 20 H, 7 × CH2, 2 × Me), 0.89 (t, J = 6.4 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 167.5 (COOCH2), 167.2 (COOCH2), 144.1 (d, J = 20.6 Hz, C4), 132.6, 131.6 (d, J = 1.4 Hz), 129.2, 127.6 (d, J = 7.4 Hz, CAr), 125.7 (d, J = 7.6 Hz, CAr), 92.9 (d, J = 173.2 Hz, CHF), 61.7 (OEt), 61.6 (OEt), 37.2 (d, J = 22.9 Hz, CH2CHF), 31.8, 29.5, 29.4, 29.3, 29.2, 24.8 (d, J = 3.9 Hz), 22.7 (7 × d, J = 3.9 Hz, 7 × CH2), 14.2, 14.1 (2 × Me). ¹9F NMR (282 MHz, CDCl3): δ = -178.9 (ddd, J H-F = 47.5, 28.9, 18.8 Hz). HRMS: m/z [M]+ calcd for C22H33O4F: 380.2362; found: 380.2381. Compound 17: R f 0.28 (pentane-Et2O, 7:3); mp 65-67 ˚C; [α]D ²0 3.0 (c = 0.2, CHCl3). IR (KBr): 3430, 3019, 1653, 1215, 1045 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.27-7.38 (m, 3 H, HAr), 5.43 (ddd, J = 47.8, 8.0, 4.9 Hz, 1 H, CHF), 4.74 (s, 2 H, CH2OH), 4.73 (s, 2 H, CH2OH), 3.67 (br s, 2 H, OH), 1.37-1.97 (m, 2 H, CH2), 1.09-1.22 (m, 14 H, 7 × CH2), 0.89 (t, J = 6.9 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 140.9 (d, J = 19.9 Hz, C4), 139.6, 139.2 (d, J = 2.0 Hz), 129.7, 126.7 (d, J = 6.6 Hz, CAr), 125.5 (d, J = 6.8 Hz, CAr), 94.4 (d, J = 170.3 Hz, CHF), 63.8 (CH2OH), 63.6 (CH2OH), 37.2 (d, J = 23.4 Hz, CH2CHF), 31.8, 29.5, 29.4, 29.3, 29.2, 25.1, 22.7 (d, J = 4.2 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -174.64 (ddd, J H-F = 46.7, 29.6, 17.9 Hz). HRMS: m/z [M - F]+ calcd for C18H29O2: 277.2167; found: 277.2178. Chiral HPLC analysis: column Chiralpack AD, eluent: hexane-EtOH, 98:2; flow rate: 1 mL/min; UV detection at λ = 225 nm; t R(17) = 16.8 min; t R (ent-17) = 19 min. Compound 18: R f 0.70 (pentane-Et2O, 9:1); mp 99-101 ˚C. IR (KBr): 2919, 2849, 1676, 1593, 1351, 1290, 1156, 1021 cm. ¹H NMR (300 MHz, CDCl3): δ = 8.30-8.35 (m, 2 H, HAr), 8.24 (s, 1 H, HAr), 7.28-7.85 (m, 4 H, HAr), 5.62 (ddd, J = 47.7, 7.9, 4.8 Hz, 1 H, CHF), 1.89-2.02 (m, 2 H, CH2), 1.22-1.52 (m, 14 H, 7 × CH2), 0.88 (t, J = 7.0 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 182.9 (COOCH2), 182.7 (COOCH2), 147.3 (d, J = 20.5 Hz, CAr), 134.2, 134.1, 133.6, 133.5, 133.1 (d, J = 1.4 Hz), 130.7 (d, J = 7.6 Hz, CAr), 127.7, 127.3, 127.2, 124.0 (4 × d, J = 7.5 Hz, CAr), 92.6 (d, J = 173.9 Hz, CHF), 37.2 (d, J = 22.7 Hz, CH2CHF), 31.8, 29.5, 29.4, 29.3, 29.2, 24.8, 22.6 (d, J = 3.9 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -179.9 (ddd, J H-F = 47.7, 28.7, 19.1 Hz). HRMS: m/z [M]+ calcd for C24H27O2F: 366.1995; found: 366.1999. Compound 23: R f 0.34 (pentane-Et2O, 9:1). IR (neat): 2956, 2928, 2856, 1731, 1615, 1466, 1287, 1131, 1070, 775 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.83 (d, J = 1.2 Hz, 1 H, H3), 7.75 (d, J = 8.0 Hz, 1 H, H6), 7.63 (dd, J = 8.0, 1.2 Hz, 1 H, H5), 4.39 (q, J = 7.1 Hz, 2 H, OEt), 4.38 (q, J = 7.1 Hz, 2 H, OEt), 2.01-2.19 (m, 2 H, CH2), 1.25-1.41 (m, 20 H, 7 × CH2, 2 × Me), 0.87 (t, J = 6.4 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 167.1 (COOCH2), 166.8 (COOCH2), 140.3 (t, J = 27.8 Hz, C4), 133.5 (t, J = 1.3 Hz), 132.3, 129.1, 127.6 (t, J = 6.1 Hz), 125.7 (t, J = 6.3 Hz, CAr), 122.3 (t, J = 243.0 Hz, CF2), 61.9 (OEt), 61.8 (OEt), 38.9 (t, J = 26.7 Hz, CH2CF2), 31.8, 29.4, 29.3, 29.2, 29.1, 22.6, 22.3 (t, J = 4.0 Hz), 14.1 (3 × Me). ¹9F NMR (282 MHz, CDCl3): δ = -96.25 (t, J H-F = 16.4 Hz). HRMS: m/z [M]+ calcd for C22H32O4F2: 398.2268; found: 398.2261. Compound 24: R f 0.71 (pentane-Et2O, 9:1); mp 88-90 ˚C. IR (KBr): 2920, 2851, 1673, 1594, 1340, 1163, 1129, 1031, 707 cm. ¹H NMR (300 MHz, CDCl3): δ = 8.31-8.41 (m, 4 H, HAr), 7.80-7.91 (m, 3 H, HAr), 2.11-2.27 (m, 2 H, CH2), 1.25-1.50 (m, 14 H, 7 × CH2), 0.86 (t, J = 6.4 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 182.5 (2 × COOCH2), 143.3 (t, J = 27.6 Hz, CAr), 134.3, 134.1 (t, J = 1.3 Hz), 130.5 (t, J = 6.0 Hz), 127.7, 127.4, 127.3, 124.1 (t, J = 6.1 Hz), 122.3 (t, J = 243.3 Hz, CF2), 38.8 (t, J = 26.6 Hz, CH2CF2), 31.8, 29.4, 29.3, 29.2, 29.1, 22.3 (t, J = 3.9 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -96.46 (t, J H-F = 16.4 Hz). HRMS: m/z [M]+ calcd for C24H26O2F2: 384.1900; found: 384.1915.