Subscribe to RSS
DOI: 10.1055/s-2008-1078179
A Rapid Access to New Fluorinated 1,3-Dienes and Benzylic Fluorides via Metathesis on Propargylic Fluorides
Publication History
Publication Date:
10 September 2008 (online)
Abstract
The cross enyne metathesis reaction of propargylic fluoride (+)-12 with ethylene affords the enantioenriched 1,3-diene (+)-14 having fluorine-containing side chain at 2-position in good yield. Upon Diels-Alder reaction, followed by aromatization, this diene affords the new benzylic fluorides (+)-16 and (+)-17 in high ee values. This new strategy has been successfully extended to the corresponding gem-difluoro diene 21 and benzylic fluorides 23 and 24.
Key words
dehydroxyfluorination - enyne metathesis - Diels-Alder reaction - aromatization - benzylic fluorides
-
1a
Kitazume T.Yamazaki T. Experimental Methods in Organic Fluorine Chemistry Gordon and Breach Science Publishers; Tokyo: 1998. -
1b
Hudlicky M.Pavlath AE. Chemistry of Organic Fluorine Compounds II: A Critical Review, ACS Monograph 187 American Chemical Society; Washington DC: 1995. -
1c
Smart BE. In Organofluorine Chemistry: Principles and Commercial ApplicationsBanks RE.Smart BE.Tatlow JC. Plenum; New York: 1994. Chap. 3. p.57-88 ; and references therein -
2a
Ojima I.McCarthy JR.Welch JT. Biomedical Frontiers in Fluorine Chemistry, ACS Symposium Series 639 American Chemical Society; Washington DC: 1996. -
2b
Welch JT.Eswarakrishnan S. Fluorine in Bioorganic Chemistry Wiley Interscience; New York: 1991. -
2c
Welch JT. Tetrahedron 1987, 43: 3123 ; and references therein - For recent examples, see:
-
3a
Thibaudeau S.Fuller R.Gouverneur V. Org. Biomol. Chem. 2004, 2: 1110 -
3b
Hunter L.O’Hagan D.Slawin AMZ. J. Am. Chem. Soc. 2006, 128: 16422 -
3c
Hunter L.Slawin AMZ.Kirsch P.O’Hagan D. Angew. Chem. Int. Ed. 2007, 46: 7887 - 4 See for instance:
Prakesch M.Grée D.Grée R. In Fluorine-Containing Synthons, ACS Symposium Series 911Soloshonok VA. American Chemical Society; Washington DC: 2005. p.173 ; and references therein - 5
Soundararajan R.Li G.Brown HC. J. Org. Chem. 1996, 61: 100 -
6a
Middleton WJ. J. Org. Chem. 1975, 40: 574 -
6b
De Jonghe S.Van Overmeire I.Poulton S.Hendrix C.Busson R.Van Calenbergh S.De Keukeleire D.Spiegel S.Herdewijn P. Bioorg. Med. Chem. Lett. 1999, 9: 3175 - 7
Grée DM.Kermarrec CJM.Martelli JT.Grée RL.Lellouche JP.Toupet LJ. J. Org. Chem. 1996, 61: 1918 - 8
Franck-Neumann M.Martina D.Heitz MP. J. Organomet. Chem. 1986, 301: 61 - 9
Hoffmann HMR.Eggert U.Poly W. Angew. Chem. Int. Ed. 1987, 26: 1015 -
10a
McClinton MA. J. Chem. Soc., Perkin Trans. 1 1992, 2149 -
10b
Box JM.Harwood LM.Whitehead RC. Synlett 1997, 571 -
10c
Ohba T.Ikeda E.Takei H. Bioorg. Med. Chem. Lett. 1996, 6: 1875 ; and references therein - See, for example:
-
11a
Prakesch M.Grée D.Grée R. Acc. Chem. Res. 2002, 35: 175 -
11b
Prakesch M.Kerouredan E.Grée D.Grée R.De Chancie J.Houk KN. J. Fluorine Chem. 2004, 125: 537 -
11c
Manthati V.Grée D.Grée R. Eur. J. Org. Chem. 2005, 3825 -
11d
Das S.Chandrasekhar S.Yadav JS.Grée R. Tetrahedron Lett. 2007, 48: 5305 -
11e
Blayo A.-L.Le Meur S.Grée D.Grée R. Adv. Synth. Catal. 2008, 350: 471 -
12a
Kaliappan KP.Ravikumar V. Org. Biomol. Chem. 2005, 3: 848 -
12b
Kaliappan KP.Ravikumar V.Pujari SA. Tetrahedron Lett. 2006, 47: 981 -
12c
Kaliappan KP.Subrahmanyam AV. Org. Lett. 2007, 9: 1121 -
12d
Kaliappan KP.Ravikumar V. Synlett 2007, 977 - For enyne cross-metathesis reactions with ethylene, see:
-
13a
Smulik JA.Diver ST. J. Org. Chem. 2000, 65: 1788 -
13b
Smulik JA.Diver ST. Org. Lett. 2000, 2: 2271 -
13c
Tonogaki K.Mori M. Tetrahedron Lett. 2002, 43: 2235 -
13d
Giessert AJ.Snyder L.Markham J.Diver ST. Org. Lett. 2003, 5: 1793 - 14
Smulik JA.Diver ST. Org. Lett. 2000, 2: 2271 - 15
Arimitsu S.Fernández B.del Pozo C.Fustero S.Hammond GB. J. Org. Chem. 2008, 73: 2656 -
16a
Madiot V.Lesot P.Grée D.Courtieu J.Grée R. Chem. Commun. 2000, 169 -
16b
Filmon J.Grée D.Grée R. J. Fluorine Chem. 2001, 107: 271 - 17
Grée D.Grée R. Tetrahedron Lett. 2007, 48: 5435 ; and references therein - 18
Sai Krishna Murthy A.Tardivel R.Grée R. In Science of Synthesis Vol. 34:Percy JM. Thieme; Stuttgart: 2006. p.295-317
References and Notes
All our attempts to measure the ee values of the intermediates (+)-14 and (+)-15 by NMR in the presence of chiral shift reagents or by chiral HPLC have been unsuccessful so far. This is a well known problem for such chiral monofluorinated molecules, see for instance ref 16a.
20General Procedure for Cross Enyne Metathesis: A solution of propargyl fluoride (1 mmol) in degassed CH2Cl2 (10 mL) was purged with ethylene and treated with the Grubbs II catalyst 13 (5 or 10 mol%). The reaction mixture was refluxed for 15 h under ethylene atmosphere. After being cooled to r.t., the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to afford the fluorodiene. Spectral data for diene (+)-14: R f 0.71 (pentane); [α]D ²0 8.0 (c = 0.2, CHCl3). IR (neat): 2927, 1966, 1650, 1456, 1216, 1023, 759 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 6.28-6.38 (m, 1 H, H2), 5.05-5.31 (m, 5 H, 2 × =CH2, CHF), 1.28-1.52 (m, 14 H, 7 × CH2), 1.72-1.83 (m, 2 H, CH2), 0.90 (t, J = 6.6 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 145.1 (d, J = 17.5 Hz, C3), 135.3 (d, J = 3.9 Hz, C2), 115.0 (d, J = 10.5 Hz, C14), 114.7 (C1), 92.1 (d, J = 171.5 Hz, C4), 34.7 (d, J = 22.6 Hz, CH2CHF), 31.9, 29.5, 29.4, 29.3, 25.1(d, J = 3.5 Hz), 22.7 (6 × d, J = 3.5 Hz, 6 × CH2), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -181.9 (dt, J H-F = 48.7, 23.6 Hz). HRMS: m/z [M]+ calcd for C14H25F: 212.1940; found: 212.1933. Spectral data for diene 21: R f 0.91 (pentane). IR (neat): 2955, 2927, 2855, 1682, 1596, 1467, 1174, 1087, 1004 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 6.27 (dd, J = 17.7, 11.3 Hz, 1 H, H2), 5.53 (dd, J = 17.7, 1.3 Hz, 1 H, H1), 5.44 (d, J = 5.5 Hz, 2 H, H14), 5.23 (d, J = 11.3 Hz, 1 H, H1), 1.91-2.07 (m, 2 H, CH2), 1.22-1.45 (m, 14 H, 7 × CH2), 0.91 (t, J = 6.8 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 142.5 (t, J = 24.2 Hz, C3), 132.6 (t, J = 2.8 Hz, C2), 122.4 (t, J = 242.4 Hz, C4), 117.3 (t, J = 1.4 Hz, C1), 116.3 (t, J = 9.5 Hz, C14), 36.5 (t, J = 26.1 Hz, CH2CF2), 31.8, 29.4, 29.3, 29.27, 29.23, 22.6, 22.3 (t, J = 4.3 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -97.44 (t, J H-F = 16.6 Hz). HRMS: m/z [M]+ calcd for C14H24F2: 230.1846; found: 230.1846.
21General Procedure for Diels-Alder Reaction with Diethyl Acetylenedicarboxylate Followed by Aromatization: A mixture of diene (1 mmol) and diethyl acetylenedicarboxylate (1.2 mmol) was heated at 60 ˚C in an oil bath for 3 h. After bringing the mixture to r.t., the crude material was purified by silica gel column chromatography to give the cycloadduct. To a solution of the above cycloadduct (1 mmol) in CH2Cl2 (40 mL) was added MnO2 (10 mmol) and the mixture was refluxed for 2 d. After being cooled to r.t., the reaction mixture was passed through a small pad of celite and the filtrate was concentrated and purified by flash column chromatography on silica gel to afford the corresponding aromatized product.
22General Procedure for One-Pot Diels-Alder Reaction with 1,4-Naphthaquinone and Aromatization: A solution of diene (1 mmol) in anhyd toluene (15 mL) was treated with 1,4-naphthaquinone (1.2 mmol) and the resulting mixture was heated at 70 ˚C for 2 d. The solvent was removed and the crude product was dissolved in CHCl3 (4 mL). To this solution silica gel purged in Et3N (2 g) was added and the mixture was stirred for another 3 h at r.t. The reaction mixture was concentrated and the crude material was purified by column chromatography to afford the corresponding aromatized adducts.
23Spectral data for selected compounds: Compound (+)-16: R f 0.30 (pentane-Et2O, 9:1); [α]D ²0 14.8 (c = 0.2, CHCl3). IR (neat): 3020, 1966, 1731, 1650, 1216, 1045, 758 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 7.75 (d, J = 8.0 Hz, 1 H, H6), 7.65 (s, 1 H, H3), 7.49 (dd, J = 8.0, 1.6 Hz, 1 H, H5), 5.55 (ddd, J = 47.7, 8.0, 4.7 Hz, 1 H, CHF), 4.35-4.43 (m, 4 H, 2 × CH2), 1.87-1.91 (m, 2 H, CH2), 1.19-1.44 (m, 20 H, 7 × CH2, 2 × Me), 0.89 (t, J = 6.4 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 167.5 (COOCH2), 167.2 (COOCH2), 144.1 (d, J = 20.6 Hz, C4), 132.6, 131.6 (d, J = 1.4 Hz), 129.2, 127.6 (d, J = 7.4 Hz, CAr), 125.7 (d, J = 7.6 Hz, CAr), 92.9 (d, J = 173.2 Hz, CHF), 61.7 (OEt), 61.6 (OEt), 37.2 (d, J = 22.9 Hz, CH2CHF), 31.8, 29.5, 29.4, 29.3, 29.2, 24.8 (d, J = 3.9 Hz), 22.7 (7 × d, J = 3.9 Hz, 7 × CH2), 14.2, 14.1 (2 × Me). ¹9F NMR (282 MHz, CDCl3): δ = -178.9 (ddd, J H-F = 47.5, 28.9, 18.8 Hz). HRMS: m/z [M]+ calcd for C22H33O4F: 380.2362; found: 380.2381. Compound 17: R f 0.28 (pentane-Et2O, 7:3); mp 65-67 ˚C; [α]D ²0 3.0 (c = 0.2, CHCl3). IR (KBr): 3430, 3019, 1653, 1215, 1045 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 7.27-7.38 (m, 3 H, HAr), 5.43 (ddd, J = 47.8, 8.0, 4.9 Hz, 1 H, CHF), 4.74 (s, 2 H, CH2OH), 4.73 (s, 2 H, CH2OH), 3.67 (br s, 2 H, OH), 1.37-1.97 (m, 2 H, CH2), 1.09-1.22 (m, 14 H, 7 × CH2), 0.89 (t, J = 6.9 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 140.9 (d, J = 19.9 Hz, C4), 139.6, 139.2 (d, J = 2.0 Hz), 129.7, 126.7 (d, J = 6.6 Hz, CAr), 125.5 (d, J = 6.8 Hz, CAr), 94.4 (d, J = 170.3 Hz, CHF), 63.8 (CH2OH), 63.6 (CH2OH), 37.2 (d, J = 23.4 Hz, CH2CHF), 31.8, 29.5, 29.4, 29.3, 29.2, 25.1, 22.7 (d, J = 4.2 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -174.64 (ddd, J H-F = 46.7, 29.6, 17.9 Hz). HRMS: m/z [M - F]+ calcd for C18H29O2: 277.2167; found: 277.2178. Chiral HPLC analysis: column Chiralpack AD, eluent: hexane-EtOH, 98:2; flow rate: 1 mL/min; UV detection at λ = 225 nm; t R(17) = 16.8 min; t R (ent-17) = 19 min. Compound 18: R f 0.70 (pentane-Et2O, 9:1); mp 99-101 ˚C. IR (KBr): 2919, 2849, 1676, 1593, 1351, 1290, 1156, 1021 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 8.30-8.35 (m, 2 H, HAr), 8.24 (s, 1 H, HAr), 7.28-7.85 (m, 4 H, HAr), 5.62 (ddd, J = 47.7, 7.9, 4.8 Hz, 1 H, CHF), 1.89-2.02 (m, 2 H, CH2), 1.22-1.52 (m, 14 H, 7 × CH2), 0.88 (t, J = 7.0 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 182.9 (COOCH2), 182.7 (COOCH2), 147.3 (d, J = 20.5 Hz, CAr), 134.2, 134.1, 133.6, 133.5, 133.1 (d, J = 1.4 Hz), 130.7 (d, J = 7.6 Hz, CAr), 127.7, 127.3, 127.2, 124.0 (4 × d, J = 7.5 Hz, CAr), 92.6 (d, J = 173.9 Hz, CHF), 37.2 (d, J = 22.7 Hz, CH2CHF), 31.8, 29.5, 29.4, 29.3, 29.2, 24.8, 22.6 (d, J = 3.9 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -179.9 (ddd, J H-F = 47.7, 28.7, 19.1 Hz). HRMS: m/z [M]+ calcd for C24H27O2F: 366.1995; found: 366.1999. Compound 23: R f 0.34 (pentane-Et2O, 9:1). IR (neat): 2956, 2928, 2856, 1731, 1615, 1466, 1287, 1131, 1070, 775 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 7.83 (d, J = 1.2 Hz, 1 H, H3), 7.75 (d, J = 8.0 Hz, 1 H, H6), 7.63 (dd, J = 8.0, 1.2 Hz, 1 H, H5), 4.39 (q, J = 7.1 Hz, 2 H, OEt), 4.38 (q, J = 7.1 Hz, 2 H, OEt), 2.01-2.19 (m, 2 H, CH2), 1.25-1.41 (m, 20 H, 7 × CH2, 2 × Me), 0.87 (t, J = 6.4 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 167.1 (COOCH2), 166.8 (COOCH2), 140.3 (t, J = 27.8 Hz, C4), 133.5 (t, J = 1.3 Hz), 132.3, 129.1, 127.6 (t, J = 6.1 Hz), 125.7 (t, J = 6.3 Hz, CAr), 122.3 (t, J = 243.0 Hz, CF2), 61.9 (OEt), 61.8 (OEt), 38.9 (t, J = 26.7 Hz, CH2CF2), 31.8, 29.4, 29.3, 29.2, 29.1, 22.6, 22.3 (t, J = 4.0 Hz), 14.1 (3 × Me). ¹9F NMR (282 MHz, CDCl3): δ = -96.25 (t, J H-F = 16.4 Hz). HRMS: m/z [M]+ calcd for C22H32O4F2: 398.2268; found: 398.2261. Compound 24: R f 0.71 (pentane-Et2O, 9:1); mp 88-90 ˚C. IR (KBr): 2920, 2851, 1673, 1594, 1340, 1163, 1129, 1031, 707 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 8.31-8.41 (m, 4 H, HAr), 7.80-7.91 (m, 3 H, HAr), 2.11-2.27 (m, 2 H, CH2), 1.25-1.50 (m, 14 H, 7 × CH2), 0.86 (t, J = 6.4 Hz, 3 H, Me). ¹³C NMR (75 MHz, CDCl3): δ = 182.5 (2 × COOCH2), 143.3 (t, J = 27.6 Hz, CAr), 134.3, 134.1 (t, J = 1.3 Hz), 130.5 (t, J = 6.0 Hz), 127.7, 127.4, 127.3, 124.1 (t, J = 6.1 Hz), 122.3 (t, J = 243.3 Hz, CF2), 38.8 (t, J = 26.6 Hz, CH2CF2), 31.8, 29.4, 29.3, 29.2, 29.1, 22.3 (t, J = 3.9 Hz), 14.1 (Me). ¹9F NMR (282 MHz, CDCl3): δ = -96.46 (t, J H-F = 16.4 Hz). HRMS: m/z [M]+ calcd for C24H26O2F2: 384.1900; found: 384.1915.