Synlett 2008(16): 2518-2522  
DOI: 10.1055/s-2008-1078235
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Novel Synthetic Approach to Nine-Membered Diallylic Amides: Stereochemical Behavior and Utility as Chiral Building Block

Katsuhiko Tomooka*a,b, Masaki Suzukib, Kazuhiro Ueharaa, Maki Shimadab, Toshiyuki Akiyamab
a Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan
Fax: +81(92)5837810; e-Mail: ktomooka@cm.kyushu-u.ac.jp;
b Department of Applied Chemistry, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
Weitere Informationen

Publikationsverlauf

Received 28 May 2008
Publikationsdatum:
22. August 2008 (online)

Abstract

An efficient approach to nine-membered diallylic cyclic amides having a variety of substituents has been developed. The synthesized amides have stable planar chirality at ambient temperature. The transformation of the enantiomerically enriched amides provides optically active compounds containing stereogenic centers in a stereospecific fashion. As a demonstration of the synthetic utility of the amides, we have synthesized (+)-γ-lycorane using such an optically active amide as a chiral building block.

    References and Notes

  • For reviews, see:
  • 1a Marshall JA. Acc. Chem. Res.  1980,  13:  213 
  • 1b Nakazaki M. Yamamoto K. Naemura K. Top. Curr. Chem.  1984,  125:  1 
  • 1c Schlögl K. Top. Curr. Chem.  1984,  125:  27 
  • 1d Eliel EL. Wilen SH. Mander LN. Stereochemistry of Organic Compounds   Wiley; New York: 1994.  p.1172-1175  
  • For recent studies on planar chiral medium-sized rings, see:
  • 2a Sudau A. Münch W. Nubbemeyer U. J. Org. Chem.  2000,  65:  1710 
  • 2b Nubbemeyer U. Eur. J. Org. Chem.  2001,  1801 ; and references cited therein
  • 2c Deiters A. Mück-Lichtenfeld C. Fröhlich R. Hoppe D. Chem. Eur. J.  2002,  8:  1833 
  • 2d Gauvreau D. Barriault L. J. Org. Chem.  2005,  70:  1382 
  • 2e Larionov OV. Corey EJ. J. Am. Chem. Soc.  2008,  130:  2954 
  • 3a Tomooka K. Komine N. Fujiki D. Nakai T. Yanagitsuru S. J. Am. Chem. Soc.  2005,  127:  12182 
  • 3b Tomooka K. Suzuki M. Shimada M. Yanagitsuru S. Uehara K. Org. Lett.  2006,  8:  963 
  • For ring-closing-metathesis-based seven-membered lactam synthesis, see:
  • 4a Fu GC. Nguyen ST. Grubbs RH. J. Am. Chem. Soc.  1993,  115:  9856 
  • 4b Vo-Thanh G. Boucard V. Sauriat-Dorizon H. Guibé F. Synlett  2001,  37 
  • 13 Pd(II)-catalyzed Cope rearrangement, see: Overman LE. Jacobsen EJ. J. Am. Chem. Soc.  1982,  104:  7225 
  • In general, the aza-Wittig rearrangement is considerably slower than the corresponding oxa-Wittig rearrangement. To enhance the reactivity of the aza-Wittig rearrangement, several contrivances have been developed. For reviews, see:
  • 15a Vogel C. Synthesis  1997,  497 
  • 15b Tomooka K. In The Chemistry of Organolithium Compounds   Vol. 2:  Rappoport Z. Marek I. John Wiley and Sons; Chichester: 2004.  p.749-828  
  • The X-ray crystal structure analysis shows that the distance between C4 and C9 of 2a is 3.8 Å (Figure 2). The present rearrangement should proceed via a deprotonation of the C9 equatorial proton and an inversion of the configuration at the carbanion chiral center. It has been reported that [2,3]-Wittig rearrangement proceeds with inversion of configuration at the migrating terminus, see:
  • 16a Verner EJ. Cohen T. J. Am. Chem. Soc.  1992,  114:  375 
  • 16b Tomooka K. Igarashi T. Watanabe M. Nakai T. Tetrahedron Lett.  1992,  33:  5795 
  • 17 (+)-γ-Lycorane was obtained by Kotera in his degradation studies of lycorine, see: Kotera K. Tetrahedron  1961,  12:  248 
  • Six different asymmetric syntheses of γ-lycorane(12) have been reported thus far, see:
  • 18a Yoshizaki H. Satoh H. Sato Y. Nukui S. Shibasaki M. Mori M. J. Org. Chem.  1995,  60:  2016 
  • 18b Ikeda M. Ohtani S. Sato T. Ishibashi H. Synthesis  1998,  1803 
  • 18c Banwell MG. Harvey JE. Hockless DCR. J. Org. Chem.  2000,  65:  4241 
  • 18d Dong L. Xu Y.-J. Cun L.-F. Cui X. Mi A.-Q. Jiang Y.-Z. Gong L.-Z. Org. Lett.  2005,  7:  4285 
  • 18e Fujioka H. Murai K. Ohba Y. Hirose H. Kita Y. Chem. Commun.  2006,  832 
  • 18f Chapsal BD. Ojima I. Org. Lett.  2006,  8:  1395 
5

The ¹H NMR analysis of 6a and 6b revealed a trace amount of the aldehyde tautomer was contained (<5%).

6

General Procedure of the Synthesis of Amide 2 from 9
To a solution of Ph3P (96.2 mg, 0.368 mmol) in anhydrous THF (10 mL) at 0 ˚C was added DEAD (0.166 mL of 40 wt% in toluene, 0.366 mmol) and 9b (42.4 mg, 0.137 mmol) dissolved in anhydrous THF (4 mL). The resulting mixture was stirred at that temperature for 4 h, concentrated in vacuo, and the residue was purified by silica gel chromatography (hexane-EtOAc, 10:1 to 5:1) to afford 30.7 mg (77%) of 2b as a white solid and a trace amount of dimerized product (<1%, analyzed by ¹H NMR).

7

All new compounds were fully characterized by ¹H NMR, ¹³C NMR, and IR spectroscopy.
Data for Selected Compounds
Compound 2b: ¹H NMR (300 MHz, CDCl3): δ = 7.67 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 8.4 Hz, 2 H), 5.47 (ddd, J = 11.4, 10.8, 4.2 Hz, 1 H), 5.43-5.34 (m, 1 H), 5.24 (dd, J = 11.4, 4.5 Hz, 1 H), 4.26 (d, J = 9.9 Hz, 1 H), 3.89 (dd, J = 14.1, 4.2 Hz, 1 H), 3.05 (dd, J = 14.1, 10.8 Hz, 1 H), 3.00 (d, J = 9.9 Hz, 1 H), 2.44 (s, 3 H), 2.22-2.06 (m, 2 H), 1.99-1.70 (m, 2 H), 1.55 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.0, 136.3, 134.2 (2 C), 132.2, 131.1, 129.7, 127.1, 59.0, 44.3, 27.0, 26.5, 21.7, 17.3. IR (reflection): 2934, 1597, 1452, 1324, 1158, 1095, 1023, 960, 869, 821, 767, 714, 658, 596 cm. Mp 123 ˚C. For R-isomer (>98% ee): [α]D ²7 -65.3 (c 0.80, CHCl3); for S-isomer (>98% ee): [α]D ²7 +67.7 (c 0.88, CHCl3). Anal. Calcd for C16H21NO2S: C, 65.95; H, 7.26; N, 4.81; S, 11.00. Found: C, 65.55; H, 7.24; N, 4.70; S, 11.52.
Compound 2c: ¹H NMR (300 MHz, CDCl3): δ = 7.66 (d, J = 8.1 Hz, 2 H), 7.30 (d, J = 8.1 Hz, 2 H), 5.47-5.24 (m, 3 H), 4.40 (dd, J = 10.2, 3.9 Hz, 1 H), 3.82 (dd, J = 14.2, 4.2 Hz, 1 H), 3.00 (dd, J = 10.2, 9.9 Hz, 1 H), 2.80 (dd, J = 14.2, 11.9 Hz, 1 H), 2.43 (s, 3 H), 2.33-2.28 (m, 1 H), 2.03-1.96 (m, 1 H), 1.91-1.83 (m, 1 H), 1.69 (s, 3 H), 1.67-1.52 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.0, 138.1, 135.9, 132.8, 129.6, 128.4, 127.1, 126.1, 53.2, 45.0, 32.1, 29.4, 25.3, 21.6. IR (neat): 2934, 1319, 1149, 983, 893, 815, 734, 655, 597, 547 cm. For R-isomer (>98% ee): [α]D ²8 -88.8 (c 1.23, CHCl3); for S-isomer (>98% ee): [α]D ²9 +88.5 (c 1.60, CHCl3). Anal. Calcd for C16H21NO2S: C, 65.95; H, 7.26; N, 4.81. Found: C, 65.92; H, 7.26; N, 4.68.
Compound 2d: ¹H NMR (300 MHz, CDCl3): δ = 7.67 (d, J = 8.1 Hz, 2 H), 7.31 (d, J = 8.1 Hz, 2 H), 5.63 (dddd, J = 11.4, 11.1, 4.8, 1.2 Hz, 1 H), 5.40-5.24 (m, 3 H), 4.41 (dd, J = 9.9, 3.3 Hz, 1 H), 3.83 (dd, J = 14.1, 4.2 Hz, 1 H), 3.00 (dd, J = 9.9, 9.9 Hz, 1 H), 2.84 (dd, J = 14.1, 11.7 Hz, 1 H), 2.43 (s, 3 H), 2.37-2.30 (m, 1 H), 2.26-2.17 (m, 1 H), 1.77-1.65 (m, 1 H), 1.58-1.45 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1, 136.9, 135.8, 131.7, 129.7, 128.8, 127.1, 126.1, 53.4, 44.0, 30.2, 26.6, 21.7. IR (reflection): 3016, 2934, 2869, 1920, 1806, 1661, 1596, 1459, 1347, 988 cm. For R-isomer (>98% ee): [α]D ²5 -114.2 (c 1.21, CHCl3); for S-isomer (>98% ee): [α]D ²6 +118.9 (c 1.97, CHCl3). Anal. Calcd for C15H19NO2S: C, 64.95; H, 6.90; N, 5.05; S, 11.56. Found: C, 65.22; H, 7.07; N, 4.92; S, 11.25.
Compound (3S,4R)-10: ¹H NMR (300 MHz, CDCl3): δ = 7.72 (d, J = 8.1 Hz, 2 H), 7.32 (d, J = 8.1 Hz, 2 H), 5.53 (dd, J = 17.4, 10.8 Hz, 1 H), 5.43 (ddd, J = 17.1, 10.5, 8.4 Hz, 1 H), 5.04 (dd, J = 10.5, 1.5 Hz, 1 H), 4.98 (dd, J = 17.1, 1.5 Hz, 1 H), 4.98 (d, J = 10.8 Hz, 1 H), 4.88 (d, J = 17.4 Hz, 1 H), 3.50 (dd, J = 9.9, 7.5 Hz, 1 H), 3.44 (d, J = 9.6 Hz, 1 H), 3.16 (dd, J = 9.9, 9.9 Hz, 1 H), 3.01 (d, J = 9.6 Hz, 1 H), 2.44 (s, 3 H), 2.33-2.24 (m, 1 H), 1.02 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.3, 139.1, 134.1, 133.8, 129.6, 127.3, 118.2, 114.2, 58.2, 53.3, 51.0, 47.0, 21.8, 21.7. IR (neat): 2965, 1346, 1155, 1094, 1052, 922, 813, 711, 663, 587 cm. [α]D ¹9 -6.5 (c 1.03, CHCl3).
Compound (R,R)-11d: ¹H NMR (300 MHz, CDCl3): δ = 7.75 (d, J = 8.1 Hz, 2 H), 7.29 (d, J = 8.1 Hz, 2 H), 5.83-5.69 (m, 2 H), 5.36-5.32 (m, 1 H), 5.07 (dd, J = 9.0, 0.9 Hz, 1 H), 5.00 (dd, J = 17.1, 0.6 Hz, 1 H), 4.54 (d, J = 9.6 Hz, 1 H), 3.92-3.84 (m, 1 H), 2.42 (s, 3 H), 2.37-2.29 (m, 1 H), 2.12-1.88 (m, 2 H), 1.77-1.67 (m, 1 H), 1.58-1.47 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.3, 138.4, 137.2, 130.2, 129.7, 127.3, 127.2, 117.6, 51.5, 41.8, 24.8, 22.8, 21.6. IR (neat): 3278, 2925, 1433, 1331, 1160, 1084, 915, 814, 709, 660 cm. [α]D ²5 -86.1 (c 1.27, CHCl3).
Compound 13: ¹H NMR (300 MHz, CDCl3): δ = 7.76 (d, J = 8.1 Hz, 2 H), 7.29 (d, J = 8.1 Hz, 2 H), 5.65 (ddd, J = 9.6, 3.6, 3.3 Hz, 1 H), 5.12 (ddd, J = 9.6, 4.5, 2.1 Hz, 1 H), 4.95-4.85 (m, 1 H), 3.79-3.62 (m, 3 H), 2.42 (s, 3 H), 2.04-1.75 (m, 5 H), 1.63-1.42 (m, 2 H), 1.36-1.23 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.2, 138.3, 130.9, 129.6, 126.9, 126.4, 60.9, 51.1, 34.9, 34.2, 24.8, 24.2, 21.6. IR (neat): 3274, 2928, 1598, 1432, 1327, 1159, 1094, 1021, 915, 815, 663 cm. [α]D ²6 -153.5 (c 1.10, CHCl3).
Compound 14: ¹H NMR (300 MHz, CDCl3): δ = 7.69 (d, J = 8.1 Hz, 2 H), 7.28 (d, J = 8.1 Hz, 2 H), 5.83-5.70 (m, 2 H), 3.96 (d, J = 6.9 Hz, 1 H), 3.45 (ddd, J = 14.1, 7.5, 4.5 Hz, 1 H), 3.17 (ddd, J = 9.9, 8.4, 7.5 Hz, 1 H), 2.40 (s, 3 H), 2.03-1.89 (m, 3 H), 1.80-1.49 (m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1, 134.8, 129.5, 128.2, 127.5, 127.3, 57.5, 47.3, 36.5, 27.8, 22.9, 21.6, 20.9. IR (neat): 2924, 1598, 1450, 1343, 1161, 1092, 848, 817, 659, 593 cm. [α]D ²5
-98.6 (c 1.31, CHCl3).
Compound 17; 60:40 rotamer ratio (# denotes major,
* denotes minor rotamer signals): ¹H NMR (300 MHz, CDCl3): d = 6.96* (s, 1 H), 6.95# (s, 1 H), 6.76* (s, 1 H), 6.71# (s, 1 H), 6.04# (d, J = 10.2 Hz, 1 H), 5.99-5.96* (m, 1 H), 5.96 (s, 2 H), 5.80-5.73# (m, 1 H), 5.68-5.63* (m, 1 H), 5.23* (d, J = 9.9 Hz, 1 H), 4.62# (dd, J = 4.8, 2.1 Hz, 1 H), 4.04-3.98* (m, 1 H), 3.64# (dd, J = 9.0, 6.0 Hz, 1 H), 3.32-3.13 (m, 1 H), 2.54-2.37 (m, 1 H), 2.14-1.58 (m, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.1*, 167.0#, 148.6*, 148.5#, 147.4#, 147.3*, 132.6#, 132.4*, 129.0, 128.0, 125.8*, 125.0#, 112.7#, 109.8*, 108.0*, 107.3#, 102.1*, 102.0#, 57.0*, 55.3#, 47.0#, 44.8*, 36.6*, 35.6#, 27.6#, 25.3*, 22.7#, 22.1*, 21.0#, 20.2*. IR (neat): 2922, 1631, 1482, 1440, 1374, 1239, 1109, 1035, 932, 863, 732, 617 cm. [α]D ²5 -146.4 (c 0.86, CHCl3).
Compound 18: ¹H NMR (300 MHz, CDCl3): δ = 7.52 (s, 1 H), 6.69 (s, 1 H), 5.99 (d, J = 1.2 Hz, 1 H), 5.98 (d, J = 1.2 Hz, 1 H), 5.70-5.63 (m, 1 H), 5.36 (dd, J = 9.9, 2.4 Hz, 1 H), 4.02 (dd, J = 5.7, 4.8 Hz, 1 H), 3.69 (d, J = 9.6 Hz, 1 H), 3.67 (d, J = 9.6 Hz, 1 H), 3.62-3.56 (m, 1 H), 2.53-2.44 (m, 1 H), 2.29-2.18 (m, 1 H), 2.07-1.70 (m, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 161.8, 150.5, 146.9, 135.6, 125.9, 125.3, 123.0, 107.6, 107.4, 101.6, 56.6, 42.4, 37.1, 34.2, 30.0, 25.2. IR (neat): 2885, 1645, 1609, 1465, 1387, 1349, 1269, 1244, 1036, 933, 770, 703 cm. [α]D ²4 -111.4 (c 0.38, CHCl3).
Compound 12: ¹H NMR (300 MHz, CDCl3): δ = 6.61 (s, 1 H), 6.49 (s, 1 H), 5.89 (d, J = 1.2 Hz, 1 H), 5.88 (d, J = 1.2 Hz, 1 H), 4.02 (d, J = 14.1 Hz, 1 H), 3.37 (ddd, J = 9.3, 9.0, 3.6 Hz, 1 H), 3.22 (d, J = 14.1 Hz, 1 H), 2.75 (ddd, J = 11.7, 4.5, 4.5 Hz, 1 H), 2.39 (dd, J = 4.8, 4.5 Hz, 1 H), 2.25-2.11 (m, 2 H), 2.08-1.97 (m, 1 H), 1.80-1.60 (m, 3 H), 1.55-1.30 (m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 146.0, 145.6, 133.1, 127.3, 108.4, 106.3, 100.7, 63.0, 57.2, 53.9, 39.6, 37.5, 31.9, 30.6, 29.5, 25.4. IR (neat): 2925, 1505, 1483, 1376, 1318, 1230, 1138, 1040, 938, 867 cm. [α]D ²5 +15.0 (c 0.44, EtOH) {lit.¹7 [α]D ²0 +17.1 (c 0.25, EtOH)}. MS (ESI+): m/z = 258 [M + H]+.

8

Analytical and semipreparative-scale HPLC were carried out with a chiral stationary column [CHIRALCEL OD-H (4.6 × 250 mm or 20 × 250 mm)] equipped with a UV detector and a CD spectropolarimeter.

9

The absolute configurations of 2b and 2c were speculated on the basis of the similarity of the CD spectra of 2a and 2d.

10

Enantioenriched 2 can be prepared via the fractional crystallization of its ammonium salt with chiral carboxylic acid, see ref. 3b.

11

The detailed transition-state analysis of racemization by ab initio calculation is in progress.

12

The enantiopurity of 2a-d remains unchanged in the solid state(crystal) at -30 ˚C for at least one year.

14

The absolute stereochemistry of 10 was deduced from the configuration of 2b and the steric course of the reactions.

19

Mori and co-workers constructed the C ring of γ-lycorane by a Pd-catalyzed Mizoroki-Heck reaction, see ref. 18a.