References and Notes
For reviews, see:
1a
Marshall JA.
Acc. Chem. Res.
1980,
13:
213
1b
Nakazaki M.
Yamamoto K.
Naemura K.
Top.
Curr. Chem.
1984,
125:
1
1c
Schlögl K.
Top. Curr. Chem.
1984,
125:
27
1d
Eliel EL.
Wilen SH.
Mander LN.
Stereochemistry
of Organic Compounds
Wiley;
New York:
1994.
p.1172-1175
For recent studies on planar chiral
medium-sized rings, see:
2a
Sudau A.
Münch W.
Nubbemeyer U.
J.
Org. Chem.
2000,
65:
1710
2b
Nubbemeyer U.
Eur.
J. Org. Chem.
2001,
1801 ;
and references cited therein
2c
Deiters A.
Mück-Lichtenfeld C.
Fröhlich R.
Hoppe D.
Chem. Eur.
J.
2002,
8:
1833
2d
Gauvreau D.
Barriault L.
J. Org. Chem.
2005,
70:
1382
2e
Larionov OV.
Corey EJ.
J.
Am. Chem. Soc.
2008,
130:
2954
3a
Tomooka K.
Komine N.
Fujiki D.
Nakai T.
Yanagitsuru S.
J. Am. Chem. Soc.
2005,
127:
12182
3b
Tomooka K.
Suzuki M.
Shimada M.
Yanagitsuru S.
Uehara K.
Org.
Lett.
2006,
8:
963
For ring-closing-metathesis-based
seven-membered lactam synthesis, see:
4a
Fu GC.
Nguyen ST.
Grubbs RH.
J. Am. Chem. Soc.
1993,
115:
9856
4b
Vo-Thanh G.
Boucard V.
Sauriat-Dorizon H.
Guibé F.
Synlett
2001,
37
5 The ¹H NMR analysis
of 6a and 6b revealed
a trace amount of the aldehyde tautomer was contained (<5%).
6
General Procedure
of the Synthesis of Amide 2 from 9
To a solution of
Ph3P (96.2 mg, 0.368 mmol) in anhydrous THF (10 mL) at
0 ˚C was added DEAD (0.166 mL of 40 wt% in
toluene, 0.366 mmol) and 9b (42.4 mg, 0.137
mmol) dissolved in anhydrous THF (4 mL). The resulting mixture was
stirred at that temperature for 4 h, concentrated in vacuo, and
the residue was purified by silica gel chromatography (hexane-EtOAc,
10:1 to 5:1) to afford 30.7 mg (77%) of 2b as
a white solid and a trace amount of dimerized product (<1%,
analyzed by ¹H NMR).
7 All new compounds were fully characterized
by ¹H NMR, ¹³C
NMR, and IR spectroscopy.
Data for
Selected Compounds
Compound 2b: ¹H
NMR (300 MHz, CDCl3): δ = 7.67 (d, J = 8.4 Hz,
2 H), 7.31 (d, J = 8.4
Hz, 2 H), 5.47 (ddd, J = 11.4,
10.8, 4.2 Hz, 1 H), 5.43-5.34 (m, 1 H), 5.24 (dd, J = 11.4,
4.5 Hz, 1 H), 4.26 (d, J = 9.9
Hz, 1 H), 3.89 (dd, J = 14.1,
4.2 Hz, 1 H), 3.05 (dd, J = 14.1,
10.8 Hz, 1 H), 3.00 (d, J = 9.9
Hz, 1 H), 2.44 (s, 3 H), 2.22-2.06 (m, 2 H), 1.99-1.70
(m, 2 H), 1.55 (s, 3 H). ¹³C NMR (75
MHz, CDCl3): δ = 143.0,
136.3, 134.2 (2 C), 132.2, 131.1, 129.7, 127.1, 59.0, 44.3, 27.0,
26.5, 21.7, 17.3. IR (reflection): 2934, 1597, 1452, 1324, 1158,
1095, 1023, 960, 869, 821, 767, 714, 658, 596 cm-¹.
Mp 123 ˚C. For R-isomer
(>98% ee): [α]D
²7 -65.3 (c 0.80, CHCl3); for S-isomer (>98% ee): [α]D
²7 +67.7
(c 0.88, CHCl3). Anal. Calcd
for C16H21NO2S: C, 65.95; H, 7.26;
N, 4.81; S, 11.00. Found: C, 65.55; H, 7.24; N, 4.70; S, 11.52.
Compound 2c: ¹H NMR (300 MHz,
CDCl3): δ = 7.66 (d, J = 8.1
Hz, 2 H), 7.30 (d, J = 8.1
Hz, 2 H), 5.47-5.24 (m, 3 H), 4.40 (dd, J = 10.2,
3.9 Hz, 1 H), 3.82 (dd, J = 14.2,
4.2 Hz, 1 H), 3.00 (dd, J = 10.2,
9.9 Hz, 1 H), 2.80 (dd, J = 14.2, 11.9
Hz, 1 H), 2.43 (s, 3 H), 2.33-2.28 (m, 1 H), 2.03-1.96 (m,
1 H), 1.91-1.83 (m, 1 H), 1.69 (s, 3 H), 1.67-1.52
(m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.0,
138.1, 135.9, 132.8, 129.6, 128.4, 127.1, 126.1, 53.2, 45.0, 32.1,
29.4, 25.3, 21.6. IR (neat): 2934, 1319, 1149, 983, 893, 815, 734, 655,
597, 547 cm-¹. For R-isomer
(>98% ee): [α]D
²8 -88.8
(c 1.23, CHCl3); for S-isomer (>98% ee): [α]D
²9 +88.5
(c 1.60, CHCl3). Anal. Calcd
for C16H21NO2S: C, 65.95; H, 7.26;
N, 4.81. Found: C, 65.92; H, 7.26; N, 4.68.
Compound 2d: ¹H NMR (300 MHz,
CDCl3): δ = 7.67 (d, J = 8.1
Hz, 2 H), 7.31 (d, J = 8.1
Hz, 2 H), 5.63 (dddd, J = 11.4,
11.1, 4.8, 1.2 Hz, 1 H), 5.40-5.24 (m, 3 H), 4.41 (dd, J = 9.9, 3.3
Hz, 1 H), 3.83 (dd, J = 14.1,
4.2 Hz, 1 H), 3.00 (dd, J = 9.9,
9.9 Hz, 1 H), 2.84 (dd, J = 14.1,
11.7 Hz, 1 H), 2.43 (s, 3 H), 2.37-2.30 (m, 1 H), 2.26-2.17
(m, 1 H), 1.77-1.65 (m, 1 H), 1.58-1.45 (m, 1
H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1,
136.9, 135.8, 131.7, 129.7, 128.8, 127.1, 126.1, 53.4, 44.0, 30.2,
26.6, 21.7. IR (reflection): 3016, 2934, 2869, 1920, 1806, 1661,
1596, 1459, 1347, 988 cm-¹. For R-isomer (>98% ee): [α]D
²5 -114.2
(c 1.21, CHCl3); for S-isomer (>98% ee): [α]D
²6 +118.9
(c 1.97, CHCl3). Anal. Calcd
for C15H19NO2S: C, 64.95; H, 6.90;
N, 5.05; S, 11.56. Found: C, 65.22; H, 7.07; N, 4.92; S, 11.25.
Compound
(3S,4R)-10: ¹H NMR (300 MHz,
CDCl3): δ = 7.72 (d, J = 8.1
Hz, 2 H), 7.32 (d, J = 8.1
Hz, 2 H), 5.53 (dd, J = 17.4,
10.8 Hz, 1 H), 5.43 (ddd, J = 17.1,
10.5, 8.4 Hz, 1 H), 5.04 (dd, J = 10.5,
1.5 Hz, 1 H), 4.98 (dd, J = 17.1,
1.5 Hz, 1 H), 4.98 (d, J = 10.8
Hz, 1 H), 4.88 (d, J = 17.4
Hz, 1 H), 3.50 (dd, J = 9.9,
7.5 Hz, 1 H), 3.44 (d, J = 9.6
Hz, 1 H), 3.16 (dd, J = 9.9,
9.9 Hz, 1 H), 3.01 (d, J = 9.6
Hz, 1 H), 2.44 (s, 3 H), 2.33-2.24 (m, 1 H), 1.02 (s, 3
H). ¹³C NMR (75 MHz, CDCl3): δ = 143.3,
139.1, 134.1, 133.8, 129.6, 127.3, 118.2, 114.2, 58.2, 53.3, 51.0,
47.0, 21.8, 21.7. IR (neat): 2965, 1346, 1155, 1094, 1052, 922,
813, 711, 663, 587 cm-¹. [α]D
¹9 -6.5
(c 1.03, CHCl3).
Compound
(R,R)-11d: ¹H NMR (300 MHz,
CDCl3): δ = 7.75 (d, J = 8.1
Hz, 2 H), 7.29 (d, J = 8.1
Hz, 2 H), 5.83-5.69 (m, 2 H), 5.36-5.32 (m, 1
H), 5.07 (dd, J = 9.0,
0.9 Hz, 1 H), 5.00 (dd, J = 17.1,
0.6 Hz, 1 H), 4.54 (d, J = 9.6
Hz, 1 H), 3.92-3.84 (m, 1 H), 2.42 (s, 3 H), 2.37-2.29
(m, 1 H), 2.12-1.88 (m, 2 H), 1.77-1.67 (m, 1
H), 1.58-1.47 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 143.3, 138.4,
137.2, 130.2, 129.7, 127.3, 127.2, 117.6, 51.5, 41.8, 24.8, 22.8,
21.6. IR (neat): 3278, 2925, 1433, 1331, 1160, 1084, 915, 814, 709,
660 cm-¹. [α]D
²5 -86.1
(c 1.27, CHCl3).
Compound 13: ¹H NMR (300 MHz,
CDCl3): δ = 7.76 (d, J = 8.1
Hz, 2 H), 7.29 (d, J = 8.1
Hz, 2 H), 5.65 (ddd, J = 9.6, 3.6,
3.3 Hz, 1 H), 5.12 (ddd, J = 9.6,
4.5, 2.1 Hz, 1 H), 4.95-4.85 (m, 1 H), 3.79-3.62
(m, 3 H), 2.42 (s, 3 H), 2.04-1.75 (m, 5 H), 1.63-1.42
(m, 2 H), 1.36-1.23 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 143.2, 138.3,
130.9, 129.6, 126.9, 126.4, 60.9, 51.1, 34.9, 34.2, 24.8, 24.2,
21.6. IR (neat): 3274, 2928, 1598, 1432, 1327, 1159, 1094, 1021,
915, 815, 663 cm-¹. [α]D
²6 -153.5
(c 1.10, CHCl3).
Compound 14: ¹H NMR (300 MHz,
CDCl3): δ = 7.69 (d, J = 8.1
Hz, 2 H), 7.28 (d, J = 8.1
Hz, 2 H), 5.83-5.70 (m, 2 H), 3.96 (d, J = 6.9
Hz, 1 H), 3.45 (ddd, J = 14.1,
7.5, 4.5 Hz, 1 H), 3.17 (ddd, J = 9.9,
8.4, 7.5 Hz, 1 H), 2.40 (s, 3 H), 2.03-1.89 (m, 3 H), 1.80-1.49
(m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1,
134.8, 129.5, 128.2, 127.5, 127.3, 57.5, 47.3, 36.5, 27.8, 22.9,
21.6, 20.9. IR (neat): 2924, 1598, 1450, 1343, 1161, 1092, 848,
817, 659, 593 cm-¹. [α]D
²5
-98.6
(c 1.31, CHCl3).
Compound 17; 60:40 rotamer
ratio (# denotes major,
* denotes
minor rotamer signals): ¹H NMR (300 MHz, CDCl3):
d = 6.96* (s, 1 H), 6.95# (s,
1 H), 6.76* (s, 1 H), 6.71# (s, 1 H),
6.04# (d, J = 10.2
Hz, 1 H), 5.99-5.96* (m, 1 H), 5.96 (s, 2 H),
5.80-5.73# (m, 1 H), 5.68-5.63* (m,
1 H), 5.23* (d, J = 9.9
Hz, 1 H), 4.62# (dd, J = 4.8,
2.1 Hz, 1 H), 4.04-3.98* (m, 1 H), 3.64# (dd, J = 9.0, 6.0
Hz, 1 H), 3.32-3.13 (m, 1 H), 2.54-2.37 (m, 1
H), 2.14-1.58 (m, 6 H). ¹³C NMR
(75 MHz, CDCl3): δ = 167.1*,
167.0#, 148.6*, 148.5#, 147.4#,
147.3*, 132.6#, 132.4*, 129.0,
128.0, 125.8*, 125.0#, 112.7#,
109.8*, 108.0*, 107.3#, 102.1*,
102.0#, 57.0*, 55.3#, 47.0#,
44.8*, 36.6*, 35.6#, 27.6#,
25.3*, 22.7#, 22.1*, 21.0#, 20.2*.
IR (neat): 2922, 1631, 1482, 1440, 1374, 1239, 1109, 1035, 932,
863, 732, 617 cm-¹. [α]D
²5 -146.4
(c 0.86, CHCl3).
Compound 18: ¹H NMR (300 MHz,
CDCl3): δ = 7.52 (s, 1 H), 6.69 (s,
1 H), 5.99 (d, J = 1.2
Hz, 1 H), 5.98 (d, J = 1.2 Hz,
1 H), 5.70-5.63 (m, 1 H), 5.36 (dd, J = 9.9,
2.4 Hz, 1 H), 4.02 (dd, J = 5.7,
4.8 Hz, 1 H), 3.69 (d, J = 9.6
Hz, 1 H), 3.67 (d, J = 9.6
Hz, 1 H), 3.62-3.56 (m, 1 H), 2.53-2.44 (m, 1
H), 2.29-2.18 (m, 1 H), 2.07-1.70 (m, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 161.8, 150.5,
146.9, 135.6, 125.9, 125.3, 123.0, 107.6, 107.4, 101.6, 56.6, 42.4,
37.1, 34.2, 30.0, 25.2. IR (neat): 2885, 1645, 1609, 1465, 1387,
1349, 1269, 1244, 1036, 933, 770, 703 cm-¹. [α]D
²4 -111.4
(c 0.38, CHCl3).
Compound 12: ¹H NMR (300 MHz,
CDCl3): δ = 6.61 (s, 1 H), 6.49 (s,
1 H), 5.89 (d, J = 1.2
Hz, 1 H), 5.88 (d, J = 1.2 Hz,
1 H), 4.02 (d, J = 14.1
Hz, 1 H), 3.37 (ddd, J = 9.3,
9.0, 3.6 Hz, 1 H), 3.22 (d, J = 14.1
Hz, 1 H), 2.75 (ddd, J = 11.7, 4.5,
4.5 Hz, 1 H), 2.39 (dd, J = 4.8,
4.5 Hz, 1 H), 2.25-2.11 (m, 2 H), 2.08-1.97 (m,
1 H), 1.80-1.60 (m, 3 H), 1.55-1.30 (m, 4 H). ¹³C
NMR (75 MHz, CDCl3): δ = 146.0, 145.6, 133.1,
127.3, 108.4, 106.3, 100.7, 63.0, 57.2, 53.9, 39.6, 37.5, 31.9,
30.6, 29.5, 25.4. IR (neat): 2925, 1505, 1483, 1376, 1318, 1230,
1138, 1040, 938, 867 cm-¹. [α]D
²5 +15.0 (c 0.44, EtOH) {lit.¹7 [α]D
²0 +17.1
(c 0.25, EtOH)}. MS (ESI+): m/z = 258 [M + H]+.
8 Analytical and semipreparative-scale
HPLC were carried out with a chiral stationary column [CHIRALCEL
OD-H (4.6 × 250 mm or 20 × 250
mm)] equipped with a UV detector and a CD spectropolarimeter.
9 The absolute configurations of 2b and 2c were
speculated on the basis of the similarity of the CD spectra of 2a and 2d.
10 Enantioenriched 2 can
be prepared via the fractional crystallization of its ammonium salt
with chiral carboxylic acid, see ref. 3b.
11 The detailed transition-state analysis
of racemization by ab initio calculation is in progress.
12 The enantiopurity of 2a-d remains unchanged in the solid state(crystal)
at -30 ˚C for at least one year.
13 Pd(II)-catalyzed Cope rearrangement,
see: Overman LE.
Jacobsen EJ.
J. Am. Chem. Soc.
1982,
104:
7225
14 The absolute stereochemistry of 10 was deduced from the configuration of 2b and the steric course of the reactions.
In general, the aza-Wittig rearrangement
is considerably slower than the corresponding oxa-Wittig rearrangement.
To enhance the reactivity of the aza-Wittig rearrangement, several
contrivances have been developed. For reviews, see:
15a
Vogel C.
Synthesis
1997,
497
15b
Tomooka K. In
The Chemistry of Organolithium Compounds
Vol.
2:
Rappoport Z.
Marek I.
John Wiley and Sons;
Chichester:
2004.
p.749-828
The X-ray crystal structure analysis
shows that the distance between C4 and C9 of 2a is
3.8 Å (Figure 2). The present rearrangement should
proceed via a deprotonation of the C9 equatorial proton and an inversion
of the configuration at the carbanion chiral center. It has been
reported that [2,3]-Wittig rearrangement proceeds
with inversion of configuration at the migrating terminus, see:
16a
Verner EJ.
Cohen T.
J. Am. Chem. Soc.
1992,
114:
375
16b
Tomooka K.
Igarashi T.
Watanabe M.
Nakai T.
Tetrahedron Lett.
1992,
33:
5795
17 (+)-γ-Lycorane
was obtained by Kotera in his degradation studies of lycorine, see: Kotera K.
Tetrahedron
1961,
12:
248
Six different asymmetric syntheses
of γ-lycorane(12) have been reported
thus far, see:
18a
Yoshizaki H.
Satoh H.
Sato Y.
Nukui S.
Shibasaki M.
Mori M.
J. Org. Chem.
1995,
60:
2016
18b
Ikeda M.
Ohtani S.
Sato T.
Ishibashi H.
Synthesis
1998,
1803
18c
Banwell MG.
Harvey JE.
Hockless DCR.
J. Org. Chem.
2000,
65:
4241
18d
Dong L.
Xu Y.-J.
Cun L.-F.
Cui X.
Mi A.-Q.
Jiang Y.-Z.
Gong L.-Z.
Org. Lett.
2005,
7:
4285
18e
Fujioka H.
Murai K.
Ohba Y.
Hirose H.
Kita Y.
Chem. Commun.
2006,
832
18f
Chapsal BD.
Ojima I.
Org. Lett.
2006,
8:
1395
19 Mori and co-workers constructed the
C ring of γ-lycorane by a Pd-catalyzed Mizoroki-Heck
reaction, see ref. 18a.