Subscribe to RSS
DOI: 10.1055/s-2008-1078256
A Low-Temperature Ammonium Ylid Rearrangement: Enhanced Reactivity Engendered by Rigidity
Publication History
Publication Date:
13 August 2008 (online)
Abstract
Sigmatropic rearrangement of tetrahydropyridine-derived ammonium is a valuable method for the preparation of substituted prolines. These reaction normally require elevated temperatures to proceed, but bicyclic tetrahydropyridine-like ylid 1 undergoes rearrangement at -15 ˚C; the extra rigidity of the azabicyclo[3.3.0]octene system preorganizes the transition state and lowers the activation energy for rearrangement.
Key words
catalytic - rearrangement - activation - H3 - HT2C
- 1
Hashimoto K.Ohfune Y.Shirahama H. Tetrahedron Lett. 1995, 36: 6235 - 2
Jao E.Bogen S.Saksena AK.Girijavallabhan V. Tetrahedron Lett. 2003, 44: 5033 - 3
Jiang B.Xu M. Angew. Chem. Int. Ed. 2004, 43: 2543 -
4a
Cossy J.Cases M.Pardo DG. Synlett 1998, 507 -
4b
Collado I.Ezquerra J.Mateo AI.Rubio A. J. Org. Chem. 1998, 63: 1995 -
4c
Collado I.Ezquerra J.Mateo AI.Pedregal C.Rubio A. J. Org. Chem. 1999, 64: 4304 - 5
Huck BR.Llamas L.Robarge MJ.Dent TC.Song J.Hodnick WF.Crumrine C.Stricker-Krongrad A.Harrington J.Brunden KR.Bennani YL. Bioorg. Med. Chem. Lett. 2006, 16: 4130 - 6
Santora VJ.Covel JA.Hayashi R.Hofilena BJ.Ibarra JB.Pulley MD.Weinhouse MI.Sengupta D.Duffield JJ.Semple G.Webb RR.Sage C.Ren A.Pereira G.Knudsen J.Edwards JE.Suarez M.Frazer J.Thomsen W.Hauser E.Whelan K.Grottick AJ. Bioorg. Med. Chem. Lett. 2008, 18: 1490 - 7
Heath P.Roberts E.Wessel HP.Workman JA.Sweeney JB. J. Org. Chem. 2003, 68: 4083 - 8 Related aza-Claisen rearrangements:
Chao S.Kunng F.-A.Gu J.-M.Ammon HL.Mariano PS. J. Org. Chem. 1984, 49: 2708 -
9a
Larson SD.Grieco PA. J. Am. Chem. Soc. 1985, 107: 1768 -
9b
Fray AH.Augeri DJ.Kleinman EF. J. Org. Chem. 1988, 53: 896 - 10
Roberts E.Sançon J.Workman JA.Sweeney JB. Org. Lett. 2003, 5: 4775 - 13
Mageswaran S.Ollis WD.Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1981, 1953
References and Notes
Key Data for 4
¹H
NMR (400 MHz, CDCl3): δ = 1.24-1.31
(6 H, m), 2.33-2.38 (1 H, br m), 2.41 (3 H, s), 2.67-2.74
(1 H, m), 2.82 (1 H, dd, J = 8.5,
9.0 Hz), 2.90-2.97 (2 H, m), 3.80-3.88 (1 H, m),
4.18-4.31 (4 H, m), 5.31-5.34 (1 H, m), 5.83-5.86
(1 H, m). ¹³C NMR (100 MHz, CDCl3): δ = 14.3,
14.4, 37.2, 37.4, 41.7, 58.3, 60.8, 61.0, 63.0, 78.0, 128.1, 134.8,
168.0 (C=O), 169.4. MS (ES+): m/z calcd for C14H21NO4:
268.1543; found: 268.1539.
Key Data for 5
¹H
NMR (250 MHz, CDCl3): δ = 1.27 (6 H,
t, J = 7.1 Hz), 1.60 (1 H, d, J = 10.8 Hz), 1.79-1.86
(1 H, m), 2.50 (3 H, s), 2.51-2.58 (2 H, m), 2.69 (1 H,
dd, J = 8.5, 9.0 Hz), 3.01 (1 H,
br dd, J = 2.5, 5.1 Hz), 4.11-4.23
(4 H, m), 6.05-6.17 (1 H, m). ¹³C
NMR (62.5 MHz, CDCl3): δ = 14.5, 14.6,
39.4, 39.5, 40.7, 45.7, 51.1, 61.1, 62.0, 73.1, 133.2, 136.1, 170.5, 171.2.
MS (ES+): m/z calcd
for C14H21NO4: 268.1543; found: 268.1543.
Key Data for 7
¹H
NMR (400 MHz, CDCl3): δ = 2.28 (3 H,
s), 2.28-2.35 (1 H, m), 2.35-2.41 (1 H, m), 2.60-2.70
(1 H, m), 2.75-2.85 (1 H, m), 2.90 (1 H, d), 2.90 (1 H,
d), 3.50-3.57 (1 H, br m), 3.70 (3 H, s), 5.20-5.28
(1 H, m), 5.73-5.81 (1 H, m). ¹³C NMR
(100 MHz, CDCl3): δ = 39.0, 41.3, 42.6,
52.4, 55.1, 65.2, 72.3, 128.8 , 135.5, 172.3 MS (CI+): m/z (%) = 182 (100) [MH+],
122 (75), 79 and 49. HRMS: m/z calcd
for C10H15NO2: 182.1182; found:
182.1181.
The relative stereochemistry of 7 was deduced from NOE experiments, which will be reported elsewhere in due course.