RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078267
Efficient Condensation between Glyoxal Hydrates and Sulfonium Salts Leading to Highly Functionalized 1,4-Diketones
Publikationsverlauf
Publikationsdatum:
21. August 2008 (online)
Abstract
α-Alkylthio-substituted α,β-unsaturated 1,4-dicarbonyl compounds with three different functionalities are easily available through condensation of sulfonium salts and various aromatic or aliphatic glyoxal hydrates catalyzed by Na2SeO3 or a combination of selenium dioxide and Na2CO3.
Key words
alkenes - catalysis - condensation - sulfur - selenium
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Chen A.Yin G.Gao M.Wang Z.Wu A. Chin. J. Org. Chem. 2007, 27: 220 ; suppl. -
1b
Jiao Y.Da S.Xie Z.Li Y. Chin. J. Org. Chem. 2007, 27: 285 ; suppl -
1c
Mosterd A.Matser HJ.Bos HJT. Tetrahedron Lett. 1974, 15: 4179 -
2a
Akiyama S.Nakatsuji S.Hamamura T.Kataoka M.Nakagawa M. Tetrahedron Lett. 1979, 20: 2809 -
2b
Dieter RK.Silks LA. J. Org. Chem. 1986, 51: 4687 -
2c
Kang W.Sekiya T.Toru T.Ueno Y. J. Chem. Soc., Perkin Trans. 1 1990, 441 -
3a
Yin G.Zhou B.Meng X.Wu A.Pan Y. Org. Lett. 2006, 8: 2245 -
3b
Furukawa N.Akasaka T.Aida T.Oae S. J. Chem. Soc., Perkin Trans. 1 1977, 7: 372 -
4a
Aggarwal VK.Winn CL. Acc. Chem. Res. 2004, 37: 611 -
4b
Li A.Dai L.Aggarwal VK. Chem. Rev. 1997, 97: 2341 -
4c
Edwards DR.Du J.Crudden CM. Org. Lett. 2007, 9: 2397 -
4d
Aggarwal VK.Harvey JN.Richardson J. J. Am. Chem. Soc. 2002, 124: 5747 -
5a
Aggarwal VK.Hynd G.Picoul W.Vasse J.-L. J. Am. Chem. Soc. 2002, 124: 9964 -
5b
Johnson CR.Schroeck CW.Shanklin JR. J. Am. Chem. Soc. 1973, 95: 7424 -
6a
Payne GB. J. Org. Chem. 1968, 33: 3517 -
6b
Trost BM.Arndt HC. J. Org. Chem. 1973, 38: 3140 -
7a
Johnson AW.Amel RT. J. Org. Chem. 1969, 34: 1240 -
7b
Ratts KW.Yao AN. J. Org. Chem. 1966, 31: 1689 - 8
Gosselck J.Schmidt G.Béress L.Schenk H. Tetrahedron Lett. 1968, 9: 331
References and Notes
Typical Procedure
for Preparing Compound 3
A mixture of 1a (152
mg, 1.0 mmol), 2a (261 mg, 1.0 mmol), SeO2 (4.4
mg, 0.04 mmol), and Na2CO3 (10.6 mg, 0.1 mmol)
in MeCN (10 mL) was stirred for 4.5 h at r.t. After complete consumption
of starting material (TLC), MeCN was removed in vacuum to give yellow
syrup. The residue was extracted with CH2Cl2 (2 × 30
mL). The combined organic layers were washed with brine (10 mL)
and dried over anhyd Na2SO4. The extracts
were then concentrated under reduced pressure, and the residue was
purified by column chromatography (eluent: PE-EtOAc) on
SiO2 to give an 81% yield of 3a [(Z)-3a, 129 mg;
(E)-3a, 100
mg].
Compound (Z)-3a: ¹H NMR (400 MHz,
CDCl3): δ = 8.08 (d, J = 8.5
Hz, 2 H), 7.95 (d, J = 8.5
Hz, 2 H), 7.69-7.44 (m, 6 H), 7.10 (s, 1 H), 2.17 (s, 3
H). ¹³C NMR (100 MHz, CDCl3): δ = 191.9,
188.2, 160.6, 137.8, 134.9, 134.8, 132.7, 130.0, 129.1, 128.6, 128.1,
116.0, 15.4. IR (KBr): ν = 2926, 1670, 1635, 1596,
1537, 1246, 1023, 699 cm-¹.
Compound
(E)-3a: ¹H
NMR (400 MHz, CDCl3): δ = 8.00 (d, J = 8.0 Hz,
2 H), 7.89 (d, J = 8.0
Hz, 2 H), 7.57-7.43 (m, 6 H), 7.04 (s, 1 H), 2.45 (s, 3
H). ¹³C NMR (100 MHz, CDCl3): δ = 193.7,
185.1, 160.8, 137.2, 134.9, 133.6, 133.0, 128.8, 128.7, 128.6, 128.4,
115.8, 14.9. IR (KBr): ν = 3413, 1674, 1637, 1540,
1220, 781, 703, 632 cm-¹. Spectral
data were in agreement with those previously reported.³