References and Notes
-
1a
Kuwahara A.
Nishikiori T.
Shimada N.
Nakagawa T.
Fukazawa H.
Mizuno S.
Uehara Y.
J. Antibiot.
1997,
50:
712
-
1b Nishikiori T, Kuwahara A, Uehara Y, Fukazawa S, and Mizuno S. inventors; Jpn. Kokai Tokkyo Koho, Jpn. Patent, JP 09048791.
- 2
Kawada M.
Kuwahara A.
Nishikiori T.
Mizuno S.
Uehara Y.
Exp.
Cell Res.
1999,
249:
240
- 3 Recently, K01-0509 B and guadinomines
A-C were isolated. These compounds
all possess a carbamoylated 2-iminoimidazolidine. Moreover, guadinomine
B is strikingly similar to NA22598A1, see: Tsuchiya S.
Sunazuka T.
Hirose T.
Mori R.
Tanaka T.
Iwatsuki M.
Omura S.
Org.
Lett.
2006,
8:
5577 ;
and references therein
-
For other recent approaches to 2-iminoimidazolidines,
see:
-
4a
Dardonville C.
Goya P.
Rozas I.
Alsasua A.
Martín MI.
Borrego MJ.
Bioorg. Med. Chem.
2000,
8:
1567
-
4b
Isobe T.
Fukuda K.
Yamaguchi K.
Seki H.
Tokunaga T.
Ishikawa T.
J. Org. Chem.
2000,
65:
7779
-
4c
Matosiuk D.
Fidecka S.
Antkiewicz-Michaluk L.
Dybala I.
Koziol AE.
Eur.
J. Med. Chem.
2001,
36:
783
-
4d
Dennis M.
Hall LM.
Murphy PJ.
Thornhill AJ.
Nash R.
Winters AL.
Hursthouse MB.
Light ME.
Horton P.
Tetrahedron Lett.
2003,
44:
3075
-
4e
Abou-Jneid R.
Ghoulami S.
Martin M.-T.
Dau ETH.
Travert N.
Al-Mourabit A.
Org. Lett.
2004,
6:
3933
-
4f
Sanière L.
Leman L.
Bourguignon J.-J.
Dauban P.
Dodd RH.
Tetrahedron
2004,
60:
5889
-
4g
Kim M.
Mulcahy JV.
Espino CG.
Du Bois J.
Org.
Lett.
2006,
8:
1073
- 5 For a review, see: Bräse S.
Gil C.
Knepper K.
Zimmermann V.
Angew. Chem. Int. Ed.
2005,
44:
5188
-
6a
Molina P.
Conesa C.
Velasco D.
Synthesis
1996,
1459
-
6b See also: Palacios F.
Alonso C.
Aparicio D.
Rubiales G.
de los Santos JM.
Tetrahedron
2007,
63:
523
- 7
Cooper RG.
Etheridge CJ.
Stewart L.
Marshall J.
Rudginsky S.
Cheng SH.
Miller AD.
Chem. Eur. J.
1998,
4:
137 ; and references therein
- 8 Bis(diphenylphosphino)ethane has
been used to address similar problems in Staudinger and Mitsunobu
reactions, see: O’Neil IA.
Thompson S.
Murray CL.
Kalindjian SB.
Tetrahedron Lett.
1998,
39:
7787
- 13 For example, see: Hodgkinson TJ.
Shipman M.
Synthesis
1998,
1141 ; and references cited therein
9
Representative
Procedure: To a solution of 6 (0.20
g, 0.91 mmol) in anhyd CH2Cl2 (10 mL) under
nitrogen was added DPPB (0.213 g, 0.50 mmol). The reaction mixture
was stirred at r.t. for 22 h, cooled to -20 ˚C
and tosyl isocyanate (144 µL, 0.94 mmol) was slowly added.
The reaction mixture was allowed to warm to r.t. and stirred for
22 h. Removal of the solvent in vacuo and subsequent column chromatography
(8% EtOAc in CH2Cl2) gave 7 (0.24 g, 71%) as a white solid.
10
Selected Spectroscopic
Data: 7: mp 152-153 ºC
(from CH2Cl2-Et2O). ¹H
NMR (400 MHz, CDCl3): δ = 7.81 (d, J = 8.3 Hz, 2 H, ArH), 7.71
(s, 1 H, NH), 7.29-7.37 (m, 5 H, ArH), 7.22 (d, J = 8.3 Hz, 2 H, ArH), 5.25
(s, 2 H, OCH
2Ph), 3.90-3.95
(m, 2 H), 3.60-3.65 (m, 2 H), 2.40 (s, 3 H, Me). ¹³C
NMR (100.5 MHz, CDCl3): δ = 154.1 (C),
150.8 (C), 142.6 (C), 139.7 (C), 135.1 (C), 129.3 (CH), 128.6 (CH), 128.3
(CH), 128.0 (CH), 126.3 (CH), 68.5 (CH2), 43.9 (CH2),
39.9 (CH2), 21.5 (Me). IR (neat): 3315, 2919, 1753, 1621
cm-¹. MS (FAB+): m/z = 374 [M + H+],
330. HRMS (FAB+): m/z [M + H+] calcd
for C18H20N3O4S: 374.1175; found:
374.1179. 16: [α]D
²4 47
(c = 1.2, EtOH). ¹H
NMR (400 MHz, CDCl3): δ = 7.67-7.69
(m, 3 H, 2 × ArH, NH), 7.27-7.33 (m, 10 H, ArH),
7.21-7.25 (m, 3 H, 2 × ArH, NH), 6.54 (br s, 1
H, NH), 5.19 (d, J = 12.3 Hz,
1 H, OCHHPh), 5.11 (d, J = 12.3
Hz, 1 H, OCHHPh), 5.09 (d, J = 12.3 Hz, 1 H, OCHHPh), 5.02 (d, J = 12.3
Hz, 1 H, OCHHPh), 4.53-4.61
(m, 1 H, α-CH Ala), 4.43 (dd, J = 5.0,
8.5, Hz, 1 H, α-CH Val), 4.16-4.19 (m, 1 H, H-9),
3.56 (t, J = 9.4 Hz, 1 H, H-10),
3.22 (d, J = 10.8 Hz, 1 H, H-10′),
2.28 (s, 3 H, Me), 2.03-2.10 (m, 3 H, H-2, β-CH
Val), 1.58-1.70 (m, 1 H, H-8), 1.42-1.55 (m, 3
H, H-8′, 2 × H-3), 1.25 (d, J = 7.0
Hz, 3 H, β-Me Ala), 1.05-1.20 (m, 8 H, 2 × H-4,
2 × H-5, 2 × H-6, 2 × H-7), 0.81 (d, J = 6.8 Hz, 3 H, γ-Me
Val), 0.78 (d, J = 6.8 Hz, 3
H, γ-Me Val). ¹³C NMR (100.5
MHz, CDCl3): δ = 173.1 (C), 172.8 (C),
171.5 (C), 153.7 (C), 150.9 (C), 142.5 (C), 139.8 (C), 135.4 (C),
135.1 (C), 129.3 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3
(CH), 128.0 (CH), 126.2 (CH), 68.4 (CH2), 66.9 (CH2),
57.4 (CH), 56.0 (CH), 48.6 (CH), 45.2 (CH2), 36.4 (CH2),
33.0 (CH2), 30.9 (CH), 29.1 (CH2), 29.0 (CH2),
25.5 (CH2), 24.2 (CH2), 21.5 (Me), 19.1 (Me),
18.3 (Me), 17.7 (Me). IR (neat): 3400, 3281, 3061, 2925, 2885, 1717,
1631, 1616, 1541 cm-¹. MS (FAB+): m/z = 776 [M + H+],
338. HRMS (FAB+): m/z [M + H+]
calcd for C41H54N5O8S:
776.3693; found: 776.3692.
11 This data has been deposited at the
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2
1EZ, UK. Deposition number: CCDC 679310.
12 The enantiomers were separated by
analytical HPLC on a chiralpak OD-H column (3% IPA in n-hexanes, flow rate = 0.5 mL/min, λ = 245
nm); t
R [(S)-9] = 12.5
min, t
R [(R)-9] = 14.8
min.
14 Synthesised by coupling commercially
available N-Boc-l-alanine
with l-valine benzyl ester (EDC, HOBt,
Et3N, CH2Cl2, 16 h, 90%).
15 This contamination arises from the
fact that solid NH4Cl is used to quench the dissolving
metal reduction and TFA is used as a co-solvent in the subsequent
purification by silica gel chromatography. The effective molarity
of 17 in D2O, from which the
yield could be estimated, was determined by adding known quantities
of 1,4-dioxane to the sample and subsequent quantification of the
dioxane/17 ratio by ¹H NMR
integration.