Synlett 2008(11): 1711-1713  
DOI: 10.1055/s-2008-1078483
LETTER
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of (R)-α-(p-Nitroaryl)prolines via Oxidative Nucleophilic Substitution of Hydrogen in Nitroarenes

Mieczysław Mąkosza*, Daniel Sulikowski, Oleg Maltsev
Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
Fax: +48(22)6326681; e-Mail: icho-s@icho.edu.pl;
Weitere Informationen

Publikationsverlauf

Received 3 April 2008
Publikationsdatum:
11. Juni 2008 (online)

Abstract

Optically pure (R)-α-(p-nitroaryl)prolines are synthesized via oxidative nucleophilic substitution of hydrogen in nitroarenes using chiral carbanion of l-proline protected as N,O-acetal of pivalaldehyde.

1

Summer Trainee from Higher Chemical College, Moscow.

14

General Procedure
To a solution of 1 (1 mmol), nitroarene (2 mmol) in THF (10 mL), and DMF (2 mL), cooled to -78 °C, 0.5 M solution of KHMDS in toluene (3 mL, 1.5 mmol) was added dropwise during 10 min. The resulting dark-colored mixture was stirred for 30 min at the same temperature and then treated with a solution of DDQ (1.2 mmol) in THF (1 mL). After stirring for further 5 min at -78 °C, a brown slurry was slowly allowed to reach r.t. Aqueous workup gave crude product, which was purified by column chromatography.
Selected Analytical Data Compound 2a: mp 88-90 °C (MeOH); [α]D 22 +0.8 (c 1.000, CHCl3). IR (KBr): 2970, 2870, 1772, 1521, 1351, 1194, 1091, 853, 753 cm-1. 1H NMR (500 MHz, CDCl3): δ = 8.19 (d, J = 9.0 Hz, 2 H), 7.96 (d, J = 9.0 Hz, 2 H), 4.50 (s, 1 H), 3.36 (dt, J = 6.7, 11.5 Hz, 1 H), 3.09 (dt, J = 5.8, 11.5 Hz, 1 H), 2.56 (dt, J = 6.7, 12.8 Hz, 1 H), 2.00 (dt, J = 7.2, 12.8 Hz, 1 H), 1.90-1.80 (m, 2 H), 0.86 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 175.1, 149.0, 147.3, 126.6, 123.5, 106.3, 74.0, 58.9, 42.5, 36.8, 25.5, 24.3. MS (EI, 70 eV): m/z = 304 [M+], 289, 261, 247, 219, 191, 145.
Compound 2b: mp 94-96 °C (MeOH); [α]D 22 +2.1 (c 1.000, CHCl3). IR (KBr): 2961, 2901, 1781, 1536, 1364, 1196, 895, 811, 744 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.07-7.92 (m, 3 H), 4.49 (s, 1 H), 3.34-3.23 (m, 1 H), 3.13-3.03 (m, 1 H), 2.74-2.64 (m, 1 H), 2.36-2.24 (m, 1 H), 1.91-1.75 (m, 2 H), 0.89 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 173.3, 160.2 (d, J = 250 Hz), 148.2 (d, J = 9 Hz), 135.8 (d, J = 12 Hz), 128.5 (d, J = 4 Hz), 118.5 (d, J = 3 Hz), 112.6 (d, J = 28 Hz), 105.4, 73.4 (d, J = 4 Hz), 57.4 (d, J = 1 Hz), 39.6 (d, J = 3 Hz), 36.8, 25.2, 24.3. 19F NMR (376 MHz, CDCl3): δ = 105.5. MS (ESI+): m/z = 323 [M + H]+.

15

Hydrolysis - General Procedure
A solution of 2 (0.5 mmol) in 48% aq HBr (1 mL) was heated to 100 °C for 20 h. The aq acid was removed in vacuo and the dry residue was dissolved in dry EtOH (1 mL). To this solution propylene oxide (5 mL) was added carefully, and stirred at r.t. for 2 h. Precipitated solid was filtered and washed with cold EtOH. Drying under reduced pressure gave product as a white, amorphous solid.
Selected Analytical Data
Compound 3a: mp >320 °C; [α]D 22 +2.3 (c 0.667, 0.1 M HCl). IR (KBr): 3444 (bs), 3064 (bs), 1651, 1617, 1526, 1345, 854, 737 cm-1. 1H NMR (400 MHz, D2O-DCl): δ = 8.34 (d, J = 9.1 Hz, 2 H), 7.77 (d, J = 9.1 Hz, 2 H), 3.74-3.65 (m, 1 H), 3.60-3.52 (m, 1 H), 3.10-3.05 (m, 1 H), 2.70-2.60 (m, 1 H), 2.40-2.29 (m, 1 H), 2.24-2.12 (m, 1 H). 13C NMR (125 MHz D2O-DCl): δ = 171.7, 148.5, 140.8, 128.1, 124.7, 74.7, 45.7, 33.5, 22.2. MS (ESI+): m/z = 237 [M + H]+.
Compound 3b: mp >320 °C; [α]D 22 +86.5 (c 0.500, 0.1 M HCl). IR (KBr): 3107 (bs), 2720 (bs), 1634, 1624, 1348, 809 cm-1. 1H NMR (400 MHz, D2O-DCl): δ = 8.21 (ddd, J = 0.8, 2.3, 8.8 Hz, 1 H), 8.17 (dd, J = 2.2, 10.9 Hz, 1H), 7.92 (t, J = 7.7 Hz), 3.82-3.60 (m, 1 H), 3.60-3.42 (m, 1 H), 3.00-2.87 (m, 1 H), 2.87-2.70 (m, 1 H), 2.43-2.25 (m, 1 H), 2.25-2.07 (m, 1 H). 13C NMR (100 MHz D2O-DCl): δ = 170.8, 159.7 (d, J = 250 Hz), 149.6 (d, J = 10 Hz), 130.4 (d, J = 4 Hz), 128.2 (d, J = 14 Hz), 120.5 (d, J = 3 Hz), 112.1 (d, J = 27 Hz), 70.9, 46.4, 33.9, 22.1. MS (ESI+): m/z = 255 [M + H]+.