Planta Med 2008; 74(12): 1496-1503
DOI: 10.1055/s-2008-1081337
Analytical Studies
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Influence of the Habitat Altitude on the (Proto)Hypericin and (Proto)Pseudohypericin Levels of Hypericum Plants from Crete

Marina Xenophontos1 , 2 , Ilias Stavropoulos1 , 2 , Emmanuel Avramakis2 , Eleni Navakoudis1 , 2 , Dieter Dörnemann2 , 3 , 4 , Kiriakos Kotzabasis1 , 2 , 4
  • 1Department of Biology, University of Crete, Heraklion, Crete, Greece
  • 2Department of Botany, Natural History Museum of Crete, Heraklion, Crete, Greece
  • 3Fachbereich Biologie/Botanik, Philipps Universität Marburg, Marburg, Germany
  • 4Both authors contributed equally to this work
Further Information

Publication History

Received: May 31, 2008 Revised: June 21, 2008

Accepted: June 23, 2008

Publication Date:
31 July 2008 (online)

Abstract

Environmental factors are known to influence strongly the accumulation of secondary metabolites in plant tissues. In a previous paper, we studied the contents of (pseudo)hypericin and its immediate precursors in wild populations of various Hypericum species on the island of Crete, Greece, in dependence on their developmental stage. In this study, we investigated the effect of the habitat altitude on the total hypericins content of the plants, which is defined as the sum of protohypericin, hypericin, protopseudohypericin and pseudohypericin. Taking into account our previous finding that the highest accumulation is found during the flowering period in June, we collected the aerial parts of spontaneously growing H. perforatum L., H. triquentrifolium Turra, H. empetrifolium Willd. and H. perfoliatum L. during that time frame at elevations between 100 and 600 m above sea level, however, bearing in mind the time lag in development with increasing altitude. HPLC analysis of the plant material, separated again into a flowers and a leaves/petioles fraction, revealed great differences in the total hypericin content in dependence on the altitude of the habitat. Specifically, a clear trend was revealed, showing an increase of the total hypericin content with increasing altitude. However, no changes could be observed in the ratio of hypericin to protohypericin and in that of pseudohypericin to protopseudohypericin. The habitats of the employed plants were again randomly distributed all over Crete. It is proposed that higher light intensities accompanied by enhanced UV-B radiation and lower air temperature might be responsible for the increasing levels of total hypericins with increasing altitude.

Supporting information available online at http://www.thieme-connect.de/ejournals/toc/plantamedica

References

  • 1 Schempp C M, Krikin V, Simon-Haarhaus G, Kersten A, Kiss J, Termeer C C. et al . Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John's wort that acts by induction of apoptosis.  Oncogene. 2002;  21 1242-50
  • 2 Cott J M. In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract.  Pharmacopsychiatria. 2001;  30 108-12
  • 3 Falk H. Vom Photosensibilisator hypericin zum Photorezeptor stentorin – die Chemie der Phenanthroperylenchinone.  Angew Chem Int Ed Engl. 1999;  111 3306-26
  • 4 Kubin A, Wierrani F, Burner U, Alth G, Grünberger W. Hypericin – The facts about a controversial agent. Curr Pharm Des 2005: 233-53
  • 5 Flesch V, Jacques M, Cosson L, Teng B, Petiard V, Balz J. Relative importance of growth and light level on terpene concentration of Ginkgobiloba.  Phytochemistry. 1992;  31 1941-5
  • 6 Muzika R PK. Effect of nitrogen fertilization on leaf phenolic production of grand fir seedlings.  Trees. 1992;  6 241-4
  • 7 Buta J, Spaulding D. Endogenous levels of phenolics in tomato fruit during growth and maturation.  J Plant Growth Regul. 1997;  16 43-6
  • 8 Charles D, Simon J, Shock C, Feibert E, Smith R. Effect of water stress and post-harvest handling on artemisinin concentration in the leaves of Artemesia annua L. New York; John Wiley and Sons 1993
  • 9 Mosaleeyanon K, Zobayed S MA, Afreen F, Kozai T. Relationships between net photosynthetic rate and secondary metabolite conents in St. John's wort.  Plant Sci. 2005;  169 523-31
  • 10 Briskin D P, Gawienowski M C. Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum.  Plant Physiol Biochem. 2001;  39 1075-81
  • 11 Poutaraud A, Girardin P. Agronomic and chemical characterization of 39 Hypericum perforatum accessions between 1998 and 2000.  Plant Breed. 2004;  123 480-4
  • 12 Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response.  Plant Physiol. 1997;  115 327-34
  • 13 Gobbo-Netto L, Lopes N P. Medicinal plants: Factors of influence on the content of secondary metabolides.  Quim Nova. 2007;  30 374-81
  • 14 Spitaler R, Schlorhaufer P D, Ellmerer E P, Merfort I, Bortenschlager S, Stuppner H. et al . Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana cv. ARBO.  Phytochemistry. 2006;  67 09-17
  • 15 Brantner A, Kartnig T, Ouehenberger F. Vergleichende phytochromische Untersuchungen an Hypericum perforatum L. and Hypericum maculatum Crantz.  Sci Pharm. 1994;  62 261-76
  • 16 Tekel’ova D, Repcak M, Zemkova E, Toth J. Quantitative changes of dianthrones, hyperforin and flavonoids content in the flower ontogenesis of Hypericum perforatum.  Planta Med. 2000;  66 778-80
  • 17 Xenophontos M, Stavropoulos E, Avramakis E, Navakoudis E, Dörnemann D, Kotzabasis K. Developmental stages of wild grown Hypericum species adjust the quality and quantity of hypericin and pseudohypericin levels.  Planta Med. 2007;  73 1309-15
  • 18 Gray D E, Pallardy S G, Garrett H E, Rottinghaus G E. Effects of acute drought stress and time harvest on phytochemistry and dry weight of St. John′s wort leaves and flowers.  Planta Med. 2003;  69 1024-30
  • 19 Poutaraud A, Di Gregorio F, Fook Tin V C, Girardin P. Effect of light on hypericins contents in fresh flowering top parts and in an extract of St. John's wort (Hypericum perforatum).  Planta Med. 2001;  67 254-9
  • 20 Zobayed S SPK. Production of St. John′s wort plants under controlled environment for maximizing biomass and secondary metabolites.  In Vitro Cell Devel Biol Plant. 2004;  40 108-14
  • 21 Simmen U, Bobirnac I, Ullmer C, Lubbert H, Buter K B, Schaffner W. et al . Antagonist effect of pseudohypericin at CRF1 receptors.  Eur J Pharmacol. 2002;  458 251-6
  • 22 Southwell I A, Bourke C A. Seasonal variation in hypericin content of Hypericum perforatum L. (St. John's wort).  Phytochemistry. 2001;  56 437-41
  • 23 Sfichi L, Ioannidis N, Kotzabasis K. Thylakoid-associated polyamines adjust the UV-B sensitivity of the photosynthetic apparatus by means of light-harvesting complex II changes.  Photochem Photobiol. 2004;  80 499-506
  • 24 Navakoudis E, Lütz C, Langebartels C, Lütz-Meindl U, Kotzabasis K. Ozone impact on the photosynthetic apparatus and the protective role of polyamines.  Biochim Biophys Acta. 2003;  1621 160-9
  • 25 Sirvent T, Gibson D. Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors.  Physiol Mol Plant Pathol. 2002;  60 311-20

Prof. Kiriakos Kotzabasis

Department of Biology

University of Crete

P.O. Box 2208

71409 Heraklion

Crete

Greece

Fax: +30-2810-394-408

Email: kotzab@biology.uoc.gr

>