Thromb Haemost 2006; 96(04): 538-540
DOI: 10.1160/TH06-07-0361
Letter to the Editor
Schattauer GmbH

A structural model of the SHBG domain of human variant protein S Heerlen

Gerry A. F. Nicolaes
1   Department of Biochemisty, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Tilman M. Hackeng
1   Department of Biochemisty, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Kenneth Segers
1   Department of Biochemisty, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Jan Rosing
1   Department of Biochemisty, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 03 July 2006

Accepted after revision 25 August 2006

Publication Date:
29 November 2017 (online)

 

 
  • References

  • 1 Bertina RMPloos, van Amstel HK, van Wijngaarden A. et al. Heerlen polymorphism of protein S, an immunologic polymorphism due to dimorphism of residue 460. Blood 1990; 76: 538-48.
  • 2 Duchemin J, Gandrille S, Borgel D. et al. The Ser 460 to Pro substitution of the proteinS alpha (PROS1) gene is a frequent mutation associated with free protein S (type IIa) deficiency. Blood 1995; 86: 3436-43.
  • 3 Giri TK, Yamazaki T, Sala N. et al. Deficient APCcofactor activity of proteinS Heerlen in degradation of factor Va Leiden: a possible mechanism of synergism between thrombophilic risk factors. Blood 2000; 96: 523-31.
  • 4 Borgel D, Duchemin J, Alhenc-Gelas M. et al. Molecular basis for protein S hereditary deficiency: genetic defects observed in 118 patients with typeI and type IIa deficiencies. The French Network on Molecular Abnormalities Responsible for Protein C and Protein S Deficiencies. J Lab Clin Med 1996; 128: 218-27.
  • 5 Espinosa-Parrilla Y, Navarro G, Morell M. et al. Homozygosity for the protein S Heerlen allele is associated with type I PS deficiency in a thrombophilic pedigree with multiple risk factors. Thromb Haemost 2000; 83: 102-6.
  • 6 Espinosa-Parrilla Y, Morell M, Souto JC. et al. Absence of linkage between type III protein S deficiency and the PROS1 and C4BP genes in families carrying the protein S Heerlen allele. Blood 1997; 89: 2799-806.
  • 7 Dahlbäck B. Purification of human C4b-binding protein and formation of its complex with vitamin K-dependent protein S. Biochem J 1983; 209: 847-56.
  • 8 Griffin JH, Gruber A, Fernandez JA. Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin. Blood 1992; 79: 3203-11.
  • 9 Dahlbäck B. Inhibition of protein Ca cofactor function of human and bovine protein S by C4b-binding protein. J Biol Chem 1986; 261: 12022-7.
  • 10 van de Poel RH, Meijers JC, Bouma BN. C4b-binding protein inhibits the factor V-dependent but not the factor V-independent cofactor activity of protein S in the activated protein C-mediated inactivation of factor VIIIa. Thromb Haemost 2001; 85: 761-5.
  • 11 Koenen RR, Gomes L, Tans G. et al. The Ser 460 Promutation in recombinant protein S Heerlen does not affect its APC-cofactor and APC-independent anticoagulant activities. Thromb Haemost 2004; 91: 1105-14.
  • 12 Denis CV, Roberts SJ, Hackeng TM. et al. In-vivo clearance of human protein S in a mouse model: influence of C4b-binding protein and the Heerlen polymorphism. Arterioscler Thromb Vasc Biol 2005; 25: 2209-15.
  • 13 Reitsma PHPloos, van Amstel HK, Bertina RM. Three novel mutations in five unrelated subjects with hereditary protein S deficiency type I. J Clin Invest 1994; 93: 486-92.
  • 14 Lu D, Xie RL, Rydzewski A. et al. The effect of N-linked glycosylation on molecular weight, thrombin cleavage, and functional activity of human protein S. Thromb Haemost 1997; 77: 1156-63.
  • 15 Giri TK, Linse SGarcia, de Frutos P. et al. Structural requirements of anticoagulant protein S for its binding to the complement regulator C4b-binding protein. J Biol Chem 2002; 277: 15099-106.
  • 16 Kukuruzinska MA, Lennon K. Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med 1998; 09: 415-48.
  • 17 Villoutreix BO, Dahlbäck B, Borgel D. et al. Threedimensional model of the SHBG-like region of anticoagulant protein S: new structure-function insights. Proteins 2001; 43: 203-16.
  • 18 Xiang Z, Soto CS, Honig B. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc Natl Acad Sci USA 2002; 99: 7432-7.
  • 19 Lesk AM. Introduction to protein architecture. Oxford University Press; 2001
  • 20 de Groot BL, van Aalten DM, Scheek RM. et al. Prediction of protein conformational freedom from distance constraints. Proteins 1997; 29: 240-51.
  • 21 Walker FJ. Characterization of a synthetic peptide that inhibits the interaction between protein S and C4b-binding protein. J Biol Chem 1989; 264: 17645-8.
  • 22 Nelson RM, Long GM. Binding of protein S to C4b-binding protein. Mutagenesis of protein S. J Biol Chem 1992; 267: 8140-5.
  • 23 Fernandez JA, Heeb MJ, Griffin JH. Identification of residues 413-433 of plasma protein S as essential for binding to C4b-binding protein. J Biol Chem 1993; 268: 16788-94.
  • 24 Evenäs PGarcia, De Frutos P, Linse S. et al. Both G-type domains of proteinS are required for the highaffinity interaction with C4b-binding protein. Eur J Biochem 1999; 266: 935-42.
  • 25 Anderson HA, Maylock CA, Williams JA. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 2003; 04: 87-91.