Thromb Haemost 2010; 104(05): 941-948
DOI: 10.1160/TH10-03-0193
Review Article
Schattauer GmbH

Interaction of PF4 (CXCL4) with the vasculature: A role in atherosclerosis and angiogenesis

Sallouha Aidoudi
1   INSERM U920, «Molecular Mechanisms of Angiogenesis», Talence, France
2   Université Bordeaux I, Talence, France
3   INSERM VINCO U916, Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France
,
Andreas Bikfalvi
1   INSERM U920, «Molecular Mechanisms of Angiogenesis», Talence, France
2   Université Bordeaux I, Talence, France
› Author Affiliations
Further Information

Publication History

Received: 25 March 2010

Accepted after major revision: 12 July 2010

Publication Date:
24 November 2017 (online)

Summary

Platelet factor-4 (PF4), a platelet-derived chemokine, has two important functions in the vasculature. It has a pro-atherogenic role while also having anti-angiogenic effects. The activity of platelet factor-4 (PF4), unlike other chemokines that bind to specific receptors, depends on its unusually high affinity for proteoglycans and other negatively charged molecules. High affinity for heparan sulfates was thought to be central to all of PF4’s biological functions. However, other mechanisms have been described such as direct growth factor binding, activation of the CXCR3B chemokine receptor isoform that is present in some vascular cells or binding to lipoprotein-related protein-1 (LRP1). Furthermore, PF4 also binds to integrins with affinities similar to matrix molecules. These interactions may explain the effects of PF4 in healthy and pathological tissues. However, the mechanisms involved in PF4’s activity are complex and may depend on a given tissue or localisation. Overall, while much is already known about PF4, its specific role in atherosclerosis and angiogenesis remains still to be clarified.

 
  • References

  • 1 Levine SP, Wohl H. Human platelet factor 4: Purification and characterization by affinity chromatography. Purification of human platelet factor 4. J Biol Chem 1976; 251: 324-328.
  • 2 Fukami MH, Holmsen H, Kowalska MA. et al. Platelet secretion. In: Hemostasis and Thrombosis. Basis Principles and Clinical Practice. Philadelphia: Lippincott Williams & Wikins; 2001. pp. 561-573.
  • 3 Stringer SE, Gallagher JT. Specific binding of the chemokine platelet Factor 4 to heparan sulfate. J Biol Chem 1997; 272: 20508-20514.
  • 4 Handin R, Cohen H. Purification and binding properties of human platelet factor four. J Biol Chem 1976; 251: 4273-4282.
  • 5 Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res 2010; 125: 292-296.
  • 6 Lambert M, Sachais B, Kowalska A. Chemokines and thrombogenicity. Thromb Haemost 2007; 97: 722-729.
  • 7 Maurer AM, Zhou B, Han ZC. Roles of platelet factor 4 in hematopoiesis and angiogenesis. Growth Factors 2006; 24: 242-252.
  • 8 Gewirtz AM, Zhang J, Ratajczak J. et al. Chemokine regulation of human megakaryocytopoiesis. Blood 1995; 86: 2559-2567.
  • 9 Aidoudi S, Guigon M, Lebeurier I. et al. In vivo effect of platelet factor 4 (PF4) and tetrapeptide AcSDKP on haemopoiesis of mice treated with 5-fluorouracil. Br J Haematol 1996; 94: 443-448.
  • 10 von Hundelshausen P, Petersen F, Brandt E. Platelet-derived chemokines in vascular biology. Thromb Haemost 2007; 97: 704-713.
  • 11 Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 2004; 30: 379-385.
  • 12 Sachais BS. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007; 98: 1108-1113.
  • 13 Green C, Charles R, Edwards B. et al. Identification and characterization of PF4varl, a human gene variant of platelet factor 4. Mol Cell Biol 1989; 09: 1445-1451.
  • 14 Struyf S, Burdick MD, Proost P. et al. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res 2004; 95: 855-857.
  • 15 Lasagni L, Grepin R, Mazzinghi B. et al. PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood 2007; 109: 4127-4134.
  • 16 Struyf S, Burdick MD, Peeters E. et al. Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis. Cancer Res 2007; 67: 5940-5948.
  • 17 Vandercappellen J, Liekens S, Bronckaers A. et al. The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47–70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo. Mol Cancer Res 2010; 08: 322-334.
  • 18 Thaulow E, Erikssen J, Sandvik L. et al. Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 1991; 84: 613-617.
  • 19 Massberg S, Brand K, Gruner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896.
  • 20 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 09: 61-67.
  • 21 Sevitt S. Platelets and foam cells in the evolution of atherosclerosis. Histological and immunohistological studies of human lesions. Atherosclerosis 1986; 61: 107-115.
  • 22 Pitsilos S, Hunt J, Mohler ER. et al. Platelet factor 4 localization in carotid athero-sclerotic plaques: correlation with clinical parameters. Thromb Haemost 2003; 90: 1112-1120.
  • 23 Scheuerer B, Ernst M, Durrbaum-Landmann I. et al. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 2000; 95: 1158-1166.
  • 24 Gleissner CA, Ley K. CXCL4 in atherosclerosis: possible roles in monocyte arrest and macrophage foam cell formation. Thromb Haemost 2007; 98: 917-918.
  • 25 Kasper B, Winoto-Morbach S, Mittelstädt J. et al. CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingo-sine kinase 1. Eur J Immunol 2010; 40: 1162-1173.
  • 26 Gleissner CA, Shaked I, Erbel C. et al. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 2010; 106: 203-211.
  • 27 Luster A, Greenberg S, Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 1995; 182: 219-231.
  • 28 Gleissner CA, Shaked I, Little KM. et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 2010; 184: 4810-4818.
  • 29 Weber C. Platelets and chemokines in atherosclerosis: Partners in Crime. Circ Res 2005; 96: 612-616.
  • 30 von Hundelshausen P, Koenen RR, Sack M. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105: 924-930.
  • 31 Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 2010; 09: 141-153.
  • 32 Baltus T, Weber KSC, Johnson Z. et al. Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood 2003; 102: 1985-1988.
  • 33 Proudfoot AEI, Handel TM, Johnson Z. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 2003; 100: 1885-1890.
  • 34 Nesmelova IV, Sham Y, Dudek AZ. et al. Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. J Biol Chem 2005; 280: 4948-4958.
  • 35 Koenen RR, von Hundelshausen P, Nesmelova IV. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97.
  • 36 Sachais BS, Kuo A, Nassar T. et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic itinerary, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002; 99: 3613-3622.
  • 37 Nassar T, Sachais BS, Akkawi S. et al. H. Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells. J Biol Chem 2003; 278: 6187-6193.
  • 38 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 01: 27-31.
  • 39 Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182-1186.
  • 40 Folkman J. Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov 2007; 06: 273-286.
  • 41 Maione TE, Gray GS, Petro J. et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247: 77-79.
  • 42 Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 2005; 97: 1093-1107.
  • 43 De S, Razorenova O, Mc Cabe NP. et al. VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci USA 2005; 102: 7589-7594.
  • 44 Hofer E, Schweighofer B. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 2007; 97: 355-363.
  • 45 Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9-22.
  • 46 Jouan V, Canron X, Alemany M. et al. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action. Blood 1999; 94: 984-993.
  • 47 Hagedorn M, Zilberberg L, Lozano RM. et al. A short peptide domain of platelet factor 4 blocks angiogenic key events induced by FGF-2. FASEB J 2001; 15: 550-552.
  • 48 Sharpe RJ, Byers HR, Scott CF. et al. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J Natl Cancer Inst 1990; 82: 848-853.
  • 49 Tanaka T, Manome Y, Wen P. et al. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nat Med 1997; 03: 437-442.
  • 50 Maione TE, Gray GS, Hunt AJ. et al. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Cancer Res 1991; 51: 2077-2083.
  • 51 Bello L, Giussani C, Carrabba G. et al. Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors. Clin Cancer Res 2002; 08: 3539-48.
  • 52 Kolber DL, Knisely TL, Maione TE. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J Natl Cancer Inst 1995; 87: 304-309.
  • 53 Zhang C, Thornton MA, Kowalska MA. et al. Localization of distal regulatory domains in the megakaryocyte-specific platelet basic protein/platelet factor 4 gene locus. Blood 2001; 98: 610-617.
  • 54 Lozano RM, Redondo-Horcajo M, Jiminez MA. et al. Solution structure and interaction with basic and acidic fibroblast growth factor of a 3-kDa human platelet factor-4 fragment with antiangiogenic activity. J Biol Chem 2001; 276: 35723-35734.
  • 55 Perollet C, Han ZC, Savona C. et al. Platelet Factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 1998; 91: 3289-3299.
  • 56 Gengrinovitch S, Greenberg SM, Cohen T. et al. Platelet factor-4 inhibits the mitogenic activity of VEGF121andVEGF165 using several concurrent mechanisms. J Biol Chem 1995; 270: 15059-15065.
  • 57 Sato Y, Abe M, Takaki R. Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells. Biochem Biophys Res Commun 1990; 172: 595-600.
  • 58 Lasagni L, Francalanci M, Annunziato F. et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003; 197: 1537-1549.
  • 59 Yu G, Rux AH, Ma P. et al. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood 2005; 105: 3545-3551.
  • 60 Aidoudi S, Bujakowska K, Kieffer N. et al. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis. PLoS One 2008; 03: 2657-2661.
  • 61 Ragona L, Tomaselli S, Quemener C. et al. New insights into the molecular interaction of the C-terminal sequence of CXCL4 with fibroblast growth factor-2. Biochem Biophys Res Commun 2009; 382: 26-29.
  • 62 Sulpice E, Contreres JO, Lacour J. et al. Platelet factor 4 disrupts the intracellular signalling cascade induced by vascular endothelial growth factor by both KDR dependent and independent mechanisms. Eur J Biochem 2004; 271: 3310-3318.
  • 63 Stuckey JA, St Charles R, Edwards BF. A model of the platelet factor 4 complex with heparin. Proteins 1992; 14: 277-287.
  • 64 Mulloy B, Rider CC. Cytokines and proteoglycans: an introductory overview. Biochem Soc Trans 2006; 34: 409-413.
  • 65 Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000; 22: 108-112.
  • 66 Petrai I, Rombouts K, Lasagni L. et al. Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol 2008; 40: 1764-1774.
  • 67 Lambert MP, Wang Y, Bdeir KH. et al. Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood 2009; 14: 2290-2298.
  • 68 Maeshima Y, Sudhakar A, Lively JC. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002; 295: 140-143.
  • 69 Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 2002; 62: 5580-5589.
  • 70 Rehn M, Veikkola T, Kukk-Valdre E. et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001; 98: 1024-1029.
  • 71 Sudhakar A, Nyberg P, Keshamouni VG. et al. Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by 11 integrin. J Clin Invest 2005; 115: 2801-2810.
  • 72 Sudhakar A, Sugimoto H, Yang C. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc Natl Acad Sci USA 2003; 100: 4766-4771.
  • 73 Rüegg C, Yilmaz A, Bieler G. et al. Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 1998; 04: 408-414.
  • 74 Hansell P, Maione TE, Borgström P. Selective binding of platelet factor 4 to regions of active angiogenesis in vivo. Am J Physiol Heart Circ Physiol 1995; 269: H829-836.
  • 75 Borgström P, Discipio R, Maione TE. Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Res 1998; 18: 4035-4041.
  • 76 Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 2002; 04: E65.
  • 77 Streuli CH, Akhtar N. Signal co-operation between integrins and other receptor systems. Biochem J 2009; 18: 491-506.
  • 78 Mahabeleshwar GH, Feng W, Phillips DR. et al. Integrin signaling is critical for pathological angiogenesis. J Exp Med 2006; 203: 2495-2507.
  • 79 Byzova TV, Goldman CK, Pampori N. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 2000; 06: 851-860.
  • 80 Koivunen E, Gay DA, Ruoslahti E. Selection of peptides binding to the alpha 5 beta1 integrin from phage display library. J Biol Chem 1993; 268: 20205-20210.
  • 81 Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 1994; 124: 373-380.
  • 82 Chen D, Asahara T, Krasinski K. et al. Antibody blockade of thrombospondin accelerates reendothelialization and reduces neointima formation in balloon-injured Rat Carotid Artery. Circulation 1999; 100: 849-854.
  • 83 Di Stefano R, Felice F, Balbarini A. Angiogenesis as risk factor for plaque vulnerability. Curr Pharm Des 2009; 15: 1095-106.
  • 84 Drinane M, Mollmark J, Zagorchev L. et al. The Antiangiogenic activity of rPAI-123 inhibits vasa vasorum and growth of atherosclerotic plaque. Circ Res 2009; 104: 337-345.
  • 85 Hauer AD, van Puijvelde GH, Peterse N. et al. Vaccination against VEGFR2 attenuates initiation and progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 2050-2057.
  • 86 Westerweel PE, Rabelink TJ, Rookmaaker MB. et al. RANTES is required for ischaemia-induced angiogenesis, which may hamper RANTES-targeted anti-atherosclerotic therapy. Thromb Haemost 2008; 99: 794-795.