Thromb Haemost 2013; 110(05): 920-924
DOI: 10.1160/TH13-03-0183
Theme Issue Article
Schattauer GmbH

Protein degradation systems in platelets

Bjoern F. Kraemer
1   Medizinische Klinik und Poliklinik I, Klinikum der Universität München, München, Germany
,
Andrew S. Weyrich
2   Molecular Medicine Program and the Departments of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
,
Stephan Lindemann
3   Medizinische Klinik und Poliklinik III, Universitätsklinikum Tübingen, Tübingen, Germany
› Author Affiliations
Further Information

Publication History

Received: 01 March 2013

Accepted after major revision: 28 July 2013

Publication Date:
01 December 2017 (online)

Summary

Protein synthesis and degradation are essential processes that allow cells to survive and adapt to their surrounding milieu. In nucleated cells, the degradation and/or cleavage of proteins is required to eliminate aberrant proteins. Cells also degrade proteins as a mechanism for cell signalling and complex cellular functions. Although the last decade has convincingly shown that platelets synthesise proteins, the roles of protein degradation in these anucleate cytoplasts are less clear. Here we review what is known about protein degradation in platelets placing particular emphasis on the proteasome and the cysteine protease calpain.

 
  • References

  • 1 Denis MM, Tolley ND, Bunting M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122: 379-391.
  • 2 Lindemann S, Tolley ND, Dixon DA. et al. Activated platelets mediate inflammatory signalling by regulated interleukin 1beta synthesis. J Cell Biol 2001; 154: 485-490.
  • 3 Schwertz H, Tolley ND, Foulks JM. et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203: 2433-2440.
  • 4 Weyrich AS, Schwertz H, Kraiss LW. et al. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 2009; 7: 241-246.
  • 5 Booyse F, Rafelson ME. Jr. In vitro incorporation of amino-acids into the contractile protein of human blood platelets. Nature 1967; 215: 283-284.
  • 6 Thon JN, Devine DV. Translation of glycoprotein IIIa in stored blood platelets. Transfusion 2007; 47: 2260-2270.
  • 7 Yang H, Lang S, Zhai Z. et al. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood 2009; 114: 425-436.
  • 8 Zimmerman GA, Weyrich AS. Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler Thromb Vasc Biol 2008; 28: s17-24.
  • 9 Dahlmann B. Role of proteasomes in disease. BMC Biochem 2007; 8 (Suppl. 01) S3
  • 10 Jentsch S, Schlenker S. Selective protein degradation: a journey's end within the proteasome. Cell 1995; 82: 881-884.
  • 11 Bedford L, Hay D, Devoy A. et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 2008; 28: 8189-8198.
  • 12 Bochtler M, Ditzel L, Groll M. et al. The proteasome. Annu Rev Biophys Biomol Struct 1999; 28: 295-317.
  • 13 Nandi D, Tahiliani P, Kumar A. et al. The ubiquitin-proteasome system. J Biosci 2006; 31 (01) 137-55.
  • 14 Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. Biochemistry 2009; 74: 1411-1442.
  • 15 Rowley JW, Oler AJ, Tolley ND. et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011; 118: e101-111.
  • 16 Brophy TM, Raab M, Daxecker H. et al. RN181, a novel ubiquitin E3 ligase that interacts with the KVGFFKR motif of platelet integrin alpha(IIb)beta3. Biochem Biophys Res Commun 2008; 369: 1088-1093.
  • 17 Dangelmaier CA, Quinter PG, Jin J. et al. Rapid ubiquitination of Syk following GPVI activation in platelets. Blood 2005; 105: 3918-3924.
  • 18 Nayak MK, Kumar K, Dash D. Regulation of proteasome activity in activated human platelets. Cell Calcium 2011; 49: 226-232.
  • 19 Ostrowska H, Ostrowska JK, Worowski K. et al. Human platelet 20S proteasome: inhibition of its chymotrypsin-like activity and identification of the proteasome activator PA28. A preliminary report. Platelets 2003; 14: 151-157.
  • 20 Ostrowska H, Wojcik C, Worowski K. Cathepsin A and chymotrypsin-like activity of the proteasome in human blood platelets. Folia Histochem Cytobiol 1999; 37: 153-154.
  • 21 Yukawa M, Sakon M, Kambayashi J. et al. Proteasome and its novel endogeneous activator in human platelets. Biochem Biophys Res Commun 1991; 178: 256-262.
  • 22 Yukawa M, Sakon M, Kambayashi J. et al. Purification and characterisation of endogenous protein activator of human platelet proteasome. J Biochem 1993; 114: 317-323.
  • 23 Mitchell WB, Li J, French DL. et al. alphaIIbbeta3 biogenesis is controlled by engagement of alphaIIb in the calnexin cycle via the N15-linked glycan. Blood 2006; 107: 2713-2719.
  • 24 Saur SJ, Sangkhae V, Geddis AE. et al. Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood 2010; 115: 1254-1263.
  • 25 Lonial S, Waller EK, Richardson PG. et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005; 106: 3777-3784.
  • 26 Avcu F, Ural AU, Cetin T. et al. Effects of bortezomib on platelet aggregation and ATP release in human platelets, in vitro. Thromb Res 2008; 121: 567-571.
  • 27 Nayak MK, Kulkarni PP, Dash D. Regulatory role of proteasome in determination of platelet life span. J Biol Chem 2013; 288: 6826-6834.
  • 28 Kuehn L, Dahlmann B. Structural and functional properties of proteasome activator PA28. Mol Biol Rep 1997; 24: 89-93.
  • 29 Necchi V, Balduini A, Noris P. et al. Ubiquitin/proteasome-rich particulate cytoplasmic structures (PaCSs) in the platelets and megakaryocytes of ANKRD26-related thrombo-cytopenia. Thromb Haemost 2012; 109: 263-271.
  • 30 Banfi C, Brioschi M, Marenzi G. et al. Proteome of platelets in patients with coronary artery disease. Exp Hematol 2010; 38: 341-350.
  • 31 Lopez-Farre AJ, Zamorano-Leon JJ, Azcona L. et al. Proteomic changes related to "bewildered" circulating platelets in the acute coronary syndrome. Proteomics 2011; 11: 3335-3348.
  • 32 Lee SY, Lee MS, Cherla RP. et al. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell Microbiol 2008; 10: 770-780.
  • 33 Fettucciari K, Fetriconi I, Mannucci R. et al. Group B Streptococcus induces macrophage apoptosis by calpain activation. J Immunol 2006; 176: 7542-7556.
  • 34 Muller A, Gunther D, Dux F. et al. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 1999; 18: 339-352.
  • 35 Ishii H, Suzuki Y, Kuboki M. et al. Activation of calpain I in thrombin-stimulated platelets is regulated by the initial elevation of the cytosolic Ca2+ concentration. Biochem J 1992; 284: 755-760.
  • 36 Fox JE, Reynolds CC, Phillips DR. Calcium-dependent proteolysis occurs during platelet aggregation. J Biol Chem 1983; 258: 9973-9981.
  • 37 Vanags DM, Porn-Ares MI, Coppola S. et al. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996; 271: 31075-31085.
  • 38 Serrano K, Devine DV. Vinculin is proteolysed by calpain during platelet aggregation: 95 kDa cleavage fragment associates with the platelet cytoskeleton. Cell Motil Cytoskeleton 2004; 58: 242-252.
  • 39 Zhao Y, Malinin NL, Meller J. et al. Regulation of cell adhesion and migration by Kindlin-3 cleavage by calpain. J Biol Chem 2012; 287: 40012-40020.
  • 40 Ito M, Tanaka T, Nunoki K. et al. The Ca2+ -activated protease (calpain) modulates Ca2+/calmodulin dependent activity of smooth muscle myosin light chain kinase. Biochem Biophys Res Commun 1987; 145: 1321-1328.
  • 41 Croce K, Flaumenhaft R, Rivers M. et al. Inhibition of calpain blocks platelet secretion, aggregation, and spreading. J Biol Chem 1999; 274: 36321-36327.
  • 42 Kuchay SM, Wieschhaus AJ, Marinkovic M. et al. Targeted gene inactivation reveals a functional role of calpain-1 in platelet spreading. J Thromb Haemost 2012; 10: 1120-1132.
  • 43 Azam M, Andrabi SS, Sahr KE. et al. Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001; 21: 2213-2220.
  • 44 Pasquet JM, Dachary-Prigent J, Nurden AT. Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur J Biochem 1996; 239: 647-654.
  • 45 Mattheij NJ, Gilio K, Kruchten RV. et al. Dual mechanism of integrin alphaIIb-beta3 closure in procoagulant platelets. J Biol Chem. 2013 Epub ahead of print
  • 46 Zatz M, Starling A. Calpains and disease. N Engl J Med 2005; 352: 2413-2423.
  • 47 Randriamboavonjy V, Isaak J, Elgheznawy A. et al. Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood 2012; 120: 415-423.
  • 48 Lai KC, Flaumenhaft R. SNARE protein degradation upon platelet activation: calpain cleaves SNAP-23. J Cell Physiol 2003; 194: 206-214.
  • 49 Moore JC, Murphy WG, Kelton JG. Calpain proteolysis of von Willebrand factor enhances its binding to platelet membrane glycoprotein IIb/IIIa: an explanation for platelet aggregation in thrombotic thrombocytopenic purpura. Br J Haematol 1990; 74: 457-464.
  • 50 Wadhawan V, Karim ZA, Mukhopadhyay S. et al. Platelet storage under in vitro condition is associated with calcium-dependent apoptosis-like lesions and novel reorganisation in platelet cytoskeleton. Arch Biochem Biophys 2004; 422: 183-190.
  • 51 Gafni J, Cong X, Chen SF. et al. Calpain-1 cleaves and activates caspase-7. J Biol Chem 2009; 284: 25441-25449.
  • 52 Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000; 150: 887-894.
  • 53 Brown SB, Clarke MC, Magowan L. et al. Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspase-independent cell clearance program. J Biol Chem 2000; 275: 5987-5996.
  • 54 Gil-Parrado S, Fernandez-Montalvan A, Assfalg-Machleidt I. et al. Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem 2002; 277: 27217-27226.
  • 55 Debrincat MA, Josefsson EC, James C. et al. Mcl-1 and Bcl-x(L) coordinately regulate megakaryocyte survival. Blood 2012; 119: 5850-5858.
  • 56 Kodama T, Hikita H, Kawaguchi T. et al. Mcl-1 and Bcl-xL regulate Bak/Bax-dependent apoptosis of the megakaryocytic lineage at multistages. Cell Death Differ 2012; 19: 1856-1869.
  • 57 Kraemer BF, Campbell RA, Schwertz H. et al. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood 2012; 120: 5014-5020.
  • 58 Mason KD, Carpinelli MR, Fletcher JI. et al. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128: 1173-1186.
  • 59 Schoenwaelder SM, Yuan Y, Josefsson EC. et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 2009; 114: 663-666.
  • 60 Vogler M, Hamali HA, Sun XM. et al. BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood 2011; 117: 7145-7154.
  • 61 Levi M. Platelets at a crossroad of pathogenic pathways in sepsis. J Thromb Haemost 2004; 2: 2094-2095.
  • 62 Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9: 1097-1107.
  • 63 Grewal PK, Uchiyama S, Ditto D. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008; 14: 648-655.
  • 64 Piguet PF, Vesin C, Da Kan C. Activation of platelet caspases by TNF and its consequences for kinetics. Cytokine 2002; 18: 222-230.
  • 65 Mutlu A, Gyulkhandanyan AV, Freedman J. et al. Activation of caspases-9, -3 and -8 in human platelets triggered by BH3-only mimetic ABT-737 and calcium ionophore A23187: caspase-8 is activated via bypass of the death receptors. Br J Haematol 2012; 159: 565-571.
  • 66 Ben Amor N, Pariente JA, Salido GM. et al. Caspases 3 and 9 are translocated to the cytoskeleton and activated by thrombin in human platelets. Evidence for the involvement of PKC and the actin filament polymerisation. Cell Signal 2006; 18: 1252-1261.
  • 67 Shcherbina A, Remold-O’Donnell E. Role of caspase in a subset of human platelet activation responses. Blood 1999; 93: 4222-4231.
  • 68 White MJ, Schoenwaelder SM, Josefsson EC. et al. Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood 2012; 119: 4283-4290.
  • 69 Bergmeier W, Piffath CL, Cheng G. et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res 2004; 95: 677-683.
  • 70 Rabie T, Strehl A, Ludwig A. et al. Evidence for a role of ADAM17 (TACE) in the regulation of platelet glycoprotein V. J Biol Chem 2005; 280: 14462-14468.
  • 71 Santos-Martinez MJ, Medina C, Jurasz P. et al. Role of metalloproteinases in platelet function. Thromb Res 2008; 121: 535-542.
  • 72 Fujikawa K, Suzuki H, McMullen B. et al. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001; 98: 1662-1666.
  • 73 Liu L, Choi H, Bernardo A. et al. Platelet-derived VWF-cleaving metalloprotease ADAMTS-13. J Thromb Haemost 2005; 3: 2536-2544.
  • 74 Suzuki M, Murata M, Matsubara Y. et al. Detection of von Willebrand factor-cleaving protease (ADAMTS-13) in human platelets. Biochem Biophys Res Commun 2004; 313: 212-216.
  • 75 Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 2013; 35: 254-261.
  • 76 Croall DE, Ersfeld K. The calpains: modular designs and functional diversity. Genome Biol 2007; 8: 218