Thromb Haemost 2011; 105(S 06): S43-S54
DOI: 10.1160/THS10-11-0739
Thrombosis and Haemostasis Supplement
Schattauer GmbH

Inflammation and thrombosis in diabetes

Katharina Hess
1   Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
,
Peter J. Grant
1   Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 18. November 2010

Accepted after minor revision: 14. Februar 2011

Publikationsdatum:
06. Dezember 2017 (online)

Summary

Patients with diabetes mellitus are at increased risk of cardiovascular morbidity and mortality. Atherothrombosis, defined as atherosclerotic lesion disruption with superimposed thrombus formation, is the most common cause of death among these patients. Following plaque rupture, adherence of platelets is followed by local activation of coagulation, the formation of a cross-linked fibrin clot and the development of an occlusive platelet rich fibrin mesh. Patients with diabetes exhibit a thrombotic risk clustering which is composed of hyper-reactive platelets, up regulation of pro-thrombotic markers and suppression of fibrinolysis. These changes are mainly mediated by the presence of insulin resistance and dysglycaemia and an increased inflammatory state which directly affects platelet function, coagulation factors and clot structure. This prothrombotic state is related to increased cardiovascular risk and may account for the reduced response to antithrombotic therapeutic approaches, underpinning the need for adequate antithrombotic therapy in patients with diabetes to reduce their cardiovascular mortality.

 
  • References

  • 1 Wild S, Roglic G, Green A. et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-1053.
  • 2 Garcia MJ, McNamara PM, Gordon T. et al. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 1974; 23: 105-111.
  • 3 Stratmann B, Tschoepe D. Atherogenesis and atherothrombosis--focus on diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2009; 23: 291-303.
  • 4 Haffner SM, Lehto S, Rönnemaa T. et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229-234.
  • 5 Malmberg K, Yusuf S, Gerstein HC. et al. Impact of Diabetes on Long-Term Prognosis in Patients With Unstable Angina and Non–Q-Wave Myocardial Infarction Results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes). Registry Circulation 2000; 102: 1014-1019.
  • 6 Donahoe SM, Stewart GC, McCabe CH. et al. Diabetes and mortality following acute coronary syndromes. J Am Med Assoc 2007; 298: 765-775.
  • 7 Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.
  • 8 Stern MP. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes 1995; 44: 369-374.
  • 9 Herder C, Haastert B, Müller-Scholze S. et al. Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4). Diabetes 2005; 54: 11-17.
  • 10 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111-1119.
  • 11 Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 2009; 94: 3171-3182.
  • 12 Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from patho-physiology to practice. J Am Coll Cardiol 2009; 54: 2129-2138.
  • 13 Hansson GK. Inflammatory mechanisms in atherosclerosis. J Thromb Haemost 2009; 7 (Suppl. 01) 328-331.
  • 14 Shah PK. Inflammation and plaque vulnerability. Cardiovasc Drugs Ther 2009; 23: 31-40.
  • 15 Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J 2010; 74: 597-607.
  • 16 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28: 403-412.
  • 17 Willoughby S, Holmes A, Loscalzo J. Platelets and cardiovascular disease. Eur J Cardiovasc Nurs 2002; 1: 273-288.
  • 18 Lebherz C, Sanmiguel J, Wilson JM. et al. Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovasc Diabetol 2007; 6: 15.
  • 19 Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99: 1293-1304.
  • 20 Lefkovits J, Plow E, Topol E. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995; 332: 1553-1559.
  • 21 Banner DW, D’Arcy A, Chène C. et al. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 1996; 380: 41-46.
  • 22 Saenko EL, Shima M, Sarafanov AG. Role of activation of the coagulation factor VIII in interaction with vWf, phospholipid, and functioning within the factor Xase complex. Trends Cardiovasc Med 1999; 9: 185-192.
  • 23 Moreno PR, Bernardi VH, López-Cuéllar J. et al. Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 1996; 94: 3090-3097.
  • 24 Ardissino D, Merlini PA, Bauer KA. et al. Thrombogenic potential of human coronary atherosclerotic plaques. Blood 2001; 98: 2726-2729.
  • 25 Schecter AD, Giesen PL, Taby O. et al. Tissue factor expression in human arterial smooth muscle cells. TF is present in three cellular pools after growth factor stimulation. J Clin Invest 1997; 100: 2276-2285.
  • 26 Khrenov AV, Ananyeva NM, Griffin JH. et al. Coagulation pathways in atherothrombosis. Trends Cardiovasc Med 2002; 12: 317-324.
  • 27 Ananyeva NM, Kouiavskaia DV, Shima M. et al. Intrinsic pathway of blood coagulation contributes to thrombogenicity of atherosclerotic plaque. Blood 2002; 99: 4475-4485.
  • 28 Anderson TJ. Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail Rev 2003; 8: 71-86.
  • 29 Tousoulis D, Davies G, Stefanadis C. et al. Inflammatory and thrombotic mechanisms in coronary atherosclerosis. Heart 2003; 89: 993-997.
  • 30 Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med 2010; 38: S26-34.
  • 31 Cirillo P, Golino P, Calabrò P. et al. C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc Res 2005; 68: 47-55.
  • 32 Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96: 939-949.
  • 33 Schmidt MI, Duncan BB, Sharrett AR. et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 1999; 353: 1649-1652.
  • 34 Duncan BB, Schmidt MI, Pankow JS. et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52: 1799-1805.
  • 35 Pradhan AD, Manson JE, Rifai N. et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J Am Med Assoc 2001; 286: 327-334.
  • 36 Festa A, D’Agostino Jr R, Tracy RP. et al. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002; 51: 1131-1137.
  • 37 Kintscher U, Hartge M, Hess K. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 2008; 28: 1304-1310.
  • 38 Weisberg SP, McCann D, Desai M. et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808.
  • 39 Xu H, Barnes GT, Yang Q. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821-1830.
  • 40 Rocha VZ, Folco EJ, Sukhova G. et al. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 2008; 103: 467-476.
  • 41 Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25: 2062-2068.
  • 42 Rosenson RS, Koenig W. Utility of inflammatory markers in the management of coronary artery disease. Am J Cardiol 2003; 92: 10i-18i.
  • 43 Ajjan R, Grant PJ, Futers TS. et al. Complement C3 and C-reactive protein levels in patients with stable coronary artery disease. Thromb Haemost 2005; 94: 1048-1053.
  • 44 Ajjan RA, Ariëns RA. Cardiovascular disease and heritability of the prothrombotic state. Blood Rev 2009; 23: 67-78.
  • 45 Barzilay JI, Abraham L, Heckbert SR. et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 2001; 50: 2384-2389.
  • 46 Freeman DJ, Norrie J, Caslake MJ. et al. West of Scotland Coronary Prevention Study. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 2002; 51: 1596-1600.
  • 47 Spranger J, Kroke A, Möhlig M. et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003; 52: 812-817.
  • 48 Juhan-Vague I, Roul C, Alessi MC. et al. Increased plasminogen activator inhibitor activity in non insulin dependent diabetic patients--relationship with plasma insulin. Thromb Haemost 1989; 61: 370-373.
  • 49 Collier A, Rumley A, Rumley A. et al. Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes 1992; 41: 909-913.
  • 50 McGill JB, Schneider DJ, Arfken CL. et al. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 1994; 43: 104-109.
  • 51 Watala C. Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr Pharm Des 2005; 11: 2331-2365.
  • 52 Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care 2003; 26: 2181-2188.
  • 53 Davì G, Catalano I, Averna M. et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 1990; 322: 1769-1774.
  • 54 Gresele P, Guglielmini G, De Angelis M. et al. Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J Am Coll Cardiol 2003; 41: 1013-1020.
  • 55 Ferroni P, Basili S, Falco A. et al. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost 2004; 2: 1282-1291.
  • 56 Assert R, Scherk G, Bumbure A. et al. Regulation of protein kinase C by short term hyperglycaemia in human platelets in vivo and in vitro. Diabetologia 2001; 44: 188-195.
  • 57 Li Y, Woo V, Bose R. Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 2001; 280: H1480-1489.
  • 58 Angiolillo DJ, Suryadevara S. Aspirin and clopidogrel: efficacy and resistance in diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2009; 23: 375-388.
  • 59 Ferretti G, Rabini RA, Bacchetti T. et al. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab 2002; 87: 2180-2184.
  • 60 Falcon C, Pfliegler G, Deckmyn H. et al. The platelet insulin receptor: detection, partial characterization, and search for a function. Biochem Biophys Res Commun 1988; 157: 1190-1196.
  • 61 Ferreira IA, Eybrechts KL, Mocking AI. et al. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem 2004; 279: 3254-3264.
  • 62 Ferreira IA, Mocking AI, Feijge MA. et al. Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2006; 26: 417-422.
  • 63 Kobayashi K, Watanabe J, Umeda F. et al. Glycation accelerates the oxidation of low density lipoprotein by copper ions. Endocr J 1995; 42: 461-465.
  • 64 Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinical information. Curr Diab Rep 2001; 1: 282-287.
  • 65 Patrono C, FitzGerald GA. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol 1997; 17: 2309-2315.
  • 66 Davì G, Falco A, Patrono C. Determinants of F2-isoprostane biosynthesis and inhibition in man. Chem Phys Lipids 2004; 128: 149-163.
  • 67 Praticò D, Smyth EM, Violi F. et al. Local amplification of platelet function by 8-Epi prostaglandin F2alpha is not mediated by thromboxane receptor isoforms. J Biol Chem 1996; 271: 14916-14924.
  • 68 De Vriese AS, Verbeuren TJ, Van de Voorde J. et al. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963-974.
  • 69 Owens AP, Mackman N. Tissue factor and thrombosis: The clot starts here. Thromb Haemost 2010; 104: 432-439.
  • 70 Breitenstein A, Tanner FC, Lüscher TF. Tissue factor and cardiovascular disease. Circ J 2010; 74: 3-12.
  • 71 Steffel J, Hermann M, Greutert H. et al. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation 2005; 111: 1685-1689.
  • 72 Napoleone E, Di Santo A, Lorenzet R. Monocytes upregulate endothelial cell expression of tissue factor: a role for cell-cell contact and cross-talk. Blood 1997; 89: 541-549.
  • 73 Steffel J, Akhmedov A, Greutert H. et al. Histamine induces tissue factor expression: implications for acute coronary syndromes. Circulation 2005; 112: 341-349.
  • 74 Eto M, Kozai T, Cosentino F. et al. Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation 2002; 105: 1756-1759.
  • 75 Drake TA, Hannani K, Fei HH. et al. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol 1991; 138: 601-607.
  • 76 Camici GG, Steffel J, Akhmedov A. et al. Dimethyl sulfoxide inhibits tissue factor expression, thrombus formation, and vascular smooth muscle cell activation: a potential treatment strategy for drug-eluting stents. Circulation 2006; 114: 1512-1521.
  • 77 Wu J, Stevenson MJ, Brown JM. et al. C-reactive protein enhances tissue factor expression by vascular smooth muscle cells: mechanisms and in vivo significance. Arterioscler Thromb Vasc Biol 2008; 28: 698-704.
  • 78 Shantsila E, Lip GY. The role of monocytes in thrombotic disorders. Insights from tissue factor, monocyte-platelet aggregates and novel mechanisms. Thromb Haemost 2009; 102: 916-924.
  • 79 Song CJ, Nakagomi A, Chandar S. et al. C-reactive protein contributes to the hypercoagulable state in coronary artery disease. J Thromb Haemost 2006; 4: 98-106.
  • 80 Chung J, Koyama T, Ohsawa M. et al. 1,25(OH)(2)D(3) blocks TNF-induced monocytic tissue factor expression by inhibition of transcription factors AP-1 and NF-kappaB. Lab Invest 2007; 87: 540-547.
  • 81 Cai H, Song C, Endoh I. et al. Serum amyloid A induces monocyte tissue factor. J Immunol 2007; 178: 1852-1860.
  • 82 Celi A, Del Fiorentino A, Cianchetti S. et al. Tissue factor modulation by Angiotensin II: a clue to a better understanding of the cardiovascular effects of reninangiotensin system blockade?. Endocr Metab Immune Disord Drug Targets 2008; 8: 308-313.
  • 83 Butenas S, Bouchard BA, Brummel-Ziedins KE. et al. Tissue factor activity in whole blood. Blood 2005; 105: 2764-2770.
  • 84 Zillmann A, Luther T, Müller I. et al. Platelet-associated tissue factor contributes to the collagen-triggered activation of blood coagulation. Biochem Biophys Res Commun 2001; 281: 603-609.
  • 85 Müller I, Klocke A, Alex M. et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 2003; 17: 476-478.
  • 86 Panes O, Matus V, Sáez CG. et al. Human platelets synthesize and express functional tissue factor. Blood 2007; 109: 5242-5250.
  • 87 Boden G, Vaidyula VR, Homko C. et al. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 2007; 92: 4352-4358.
  • 88 Samad F, Pandey M, Loskutoff DJ. Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci USA 1998; 95: 7591-7596.
  • 89 Stegenga ME, van der Crabben SN, Levi M. et al. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes 2006; 55: 1807-1812.
  • 90 Min C, Kang E, Yu S. et al. Advanced glycation end products induce apoptosis and procoagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res Clin Pract 1999; 46: 197-202.
  • 91 Gerrits AJ, Koekman CA, van Haeften TW. et al. Platelet tissue factor synthesis in type 2 diabetes patients is resistant to inhibition by insulin. Diabetes 2010; 59: 1487-1495.
  • 92 Meade TW, Mellows S, Brozovic M. et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986; 2: 533-537.
  • 93 Kario K, Miyata T, Sakata T. et al. Fluorogenic assay of activated factor VII. Plasma factor VIIa levels in relation to arterial cardiovascular diseases in Japanese. Arterioscler Thromb 1994; 14: 265-274.
  • 94 Heinrich J, Balleisen L, Schulte H. et al. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14: 54-59.
  • 95 Folsom AR, Wu KK, Rosamond WD. et al. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997; 96: 1102-1108.
  • 96 Green D, Foiles N, Chan C. et al. Elevated fibrinogen levels and subsequent sub-clinical atherosclerosis: the CARDIA Study. Atherosclerosis 2009; 202: 623-631.
  • 97 Balleisen L, Assmann G, Bailey J. et al. Epidemiological study on factor VII, factor VIII and fibrinogen in an industrial population--II. Baseline data on the relation to blood pressure, blood glucose, uric acid, and lipid fractions. Thromb Haemost 1985; 54: 721-723.
  • 98 Balleisen L, Bailey J, Epping PH. et al. Epidemiological study on factor VII, factor VIII and fibrinogen in an industrial population: I. Baseline data on the relation to age, gender, body-weight, smoking, alcohol, pill-using, and menopause. Thromb Haemost 1985; 54: 475-479.
  • 99 Mansfield MW, Heywood DM, Grant PJ. Circulating levels of factor VII, fibrinogen, and von Willebrand factor and features of insulin resistance in first-degree relatives of patients with NIDDM. Circulation 1996; 94: 2171-2176.
  • 100 Vambergue A, Rugeri L, Gaveriaux V. et al. Factor VII tissue factor pathway inhibitor, and monocyte tissue factor in diabetes mellitus: influence of type of diabetes, obesity index, and age. Thromb Res 2001; 101: 367-375.
  • 101 Karatela RA, Sainani GS. Interrelationship between coagulation factor VII and obesity in diabetes mellitus (type 2). Diabetes Res Clin Pract 2009; 84: e41-44.
  • 102 Heywood DM, Mansfield MW, Grant PJ. Factor VII gene polymorphisms, factor VII: C levels and features of insulin resistance in non-insulin-dependent diabetes mellitus. Thromb Haemost 1996; 75: 401-406.
  • 103 Bruckert E, Carvalho de Sousa J, Giral P. et al. Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis 1989; 75: 129-134.
  • 104 Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 2006; 4: 1186-1193.
  • 105 Rumley A, Lowe GD, Sweetnam PM. et al. Factor VIII von Willebrand factor and the risk of major ischaemic heart disease in the Caerphilly Heart Study. Br J Haematol 1999; 105: 110-116.
  • 106 Danesh J, Wheeler JG, Hirschfield GM. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004; 350: 1387-1397.
  • 107 Conlan MG, Folsom AR, Finch A. et al. Associations of factor VIII and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study. Thromb Haemost 1993; 70: 380-385.
  • 108 Saito I, Folsom AR, Brancati FL. et al. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med 2000; 133: 81-91.
  • 109 Frankel DS, Meigs JB, Massaro JM. et al. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the framingham offspring study. Circulation 2008; 118: 2533-2539.
  • 110 Kistorp C, Chong AY, Gustafsson F. et al. Biomarkers of endothelial dysfunction are elevated and related to prognosis in chronic heart failure patients with diabetes but not in those without diabetes. Eur J Heart Fail 2008; 10: 380-387.
  • 111 Bernardo A, Ball C, Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 2004; 104: 100-106.
  • 112 de Willige SU, Standeven KF, Philippou H. et al. The pleiotropic role of the fibrinogen gamma’ chain in hemostasis. Blood 2009; 114: 3994-4001.
  • 113 Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med 2007; 262: 157-172.
  • 114 Koenig W. Fibrin(ogen) in cardiovascular disease: an update. Thromb Haemost 2003; 89: 601-609.
  • 115 Lütjens A, te Velde AA, vd Veen EA. et al. Glycosylation of human fibrinogen in vivo. Diabetologia 1985; 28: 87-89.
  • 116 Nair CH, Azhar A, Wilson JD. et al. Studies on fibrin network structure in human plasma. Part II--Clinical application: diabetes and antidiabetic drugs. Thromb Res 1991; 64: 477-485.
  • 117 Jörneskog G, Egberg N, Fagrell B. et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 1996; 39: 1519-1523.
  • 118 Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005; 48: 1198-1206.
  • 119 Fatah K, Silveira A, Tornvall P. et al. Proneness to formation of tight and rigid fibrin gel structures in men with myokardial infarction at a young age. Thromb Haemost 1996; 76: 535-540.
  • 120 Collet JP, Allali Y, Lesty C. et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 2006; 26: 2567-2573.
  • 121 Pieters M, van Zyl DG, Rheeder P. et al. Glycation of fibrinogen in uncontrolled diabetic patients and the effects of glycaemic control on fibrinogen glycation. Thromb Res 2007; 120: 439-446.
  • 122 Pieters M, Covic N, van der Westhuizen FH. et al. Glycaemic control improves fibrin network characteristics in type 2 diabetes – a purified fibrinogen model. Thromb Haemost 2008; 99: 691-700.
  • 123 Dunn EJ, Ariëns RA. Fibrinogen and fibrin clot structure in diabetes. Herz 2004; 29: 470-479.
  • 124 Iacoviello L, Vischetti M, Zito F. et al. Genes encoding fibrinogen and cardiovascular risk. Hypertension 2001; 38: 1199-1203.
  • 125 Jacquemin B, Antoniades C, Nyberg F. et al. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to proinflammatory stimulation in myocardial infarction survivors: the AIRGENE study. J Am Coll Cardiol 2008; 52: 941-952.
  • 126 Aso Y, Okumura K, Yoshida N. et al. Plasma interleukin-6 is associated with coagulation in poorly controlled patients with Type 2 diabetes. Diabet Med 2003; 20: 930-934.
  • 127 Müller S, Martin S, Koenig W. et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia 2002; 45: 805-812.
  • 128 Muszbek L, Bagoly Z, Bereczky Z. et al. The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovasc Hematol Agents Med Chem 2008; 6: 190-205.
  • 129 Kohler HP, Stickland MH, Ossei-Gerning N. et al. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 1998; 79: 8-13.
  • 130 Mansfield MW, Kohler HP, Ariëns RA. et al. Circulating levels of coagulation factor XIII in subjects with type 2 diabetes and in their first-degree relatives. Diabetes Care 2000; 23: 703-705.
  • 131 Kain K, Catto AJ, Grant PJ. Associations between insulin resistance and thrombotic risk factors in high-risk South Asian subjects. Diabet Med 2003; 20: 651-655.
  • 132 Samaras K, Botelho NK, Chisholm DJ. et al. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 2010; 18: 884-889.
  • 133 Distelmaier K, Adlbrecht C, Jakowitsch J. et al. Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost 2009; 102: 564-572.
  • 134 Hess K, Mathai M, Koko T. et al. Abstract 4940: Inflammatory Thrombotic Interactions in Young Type 1 Diabetes Subjects: Effects of Glycaemic Control. Circulation 2009; 120: S1025-S1026.
  • 135 Hess K, Alzahrani S, Strachan M. et al. Abstract 14996: Complement C3 and Thrombosis Risk in Diabetes: A Potential New Therapeutic Target. Circulation 2010; 122: A14996.
  • 136 Dimova EY, Kietzmann T. Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: lessons from the liver. Thromb Haemost 2008; 100: 992-1006.
  • 137 van Meijer M, Pannekoek H. Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: an update. Fibrinolysis 1995; 9: 263-276.
  • 138 Stoop AA, Lupu F, Pannekoek H. Colocalization of thrombin, PAI-1, and vitronectin in the atherosclerotic vessel wall: A potential regulatory mechanism of thrombin activity by PAI-1/vitronectin complexes. Arterioscler Thromb Vasc Biol 2000; 20: 1143-1149.
  • 139 Paramo JA, Colucci M, Collen D. et al. Plasminogen activator inhibitor in the blood of patients with coronary artery disease. Br Med J 1985; 291: 573-574.
  • 140 Aznar J, Estellés A, Tormo G. et al. Plasminogen activator inhibitor activity and other fibrinolytic variables in patients with coronary artery disease. Br Heart J 1988; 59: 535-541.
  • 141 Juhan-Vague I, Pyke SD, Alessi MC. et al. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. Circulation 1996; 94: 2057-2063.
  • 142 Schneider DJ, Nordt TK, Sobel BE. Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes 1993; 42: 1-7.
  • 143 Brazionis L, Rowley K, Jenkins A. et al. Plasminogen activator inhibitor-1 activity in type 2 diabetes: a different relationship with coronary heart disease and diabetic retinopathy. Arterioscler Thromb Vasc Biol 2008; 28: 786-791.
  • 144 Juhan-Vague I, Thompson SG, Jespersen J. Involvement of the hemostatic system in the insulin resistance syndrome. A study of 1500 patients with angina pectoris. The ECAT Angina Pectoris Study Group. Arterioscler Thromb 1993; 13: 1865-1873.
  • 145 Meltzer ME, Doggen CJ, de Groot PG. et al. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men. Blood 2010; 116: 529-536.
  • 146 Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 1991; 88: 1346-1353.
  • 147 Schneider DJ, Sobel BE. Synergistic augmentation of expression of plasminogen activator inhibitor type-1 induced by insulin, very-low-density lipoproteins, and fatty acids. Coron Artery Dis 1996; 7: 813-817.
  • 148 Eriksson P, Reynisdottir S, Lönnqvist F. et al. Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia 1998; 41: 65-71.
  • 149 Kishore P, Li W, Tonelli J. et al. Adipocyte-derived factors potentiate nutrient-induced production of plasminogen activator inhibitor-1 by macrophages. Sci Transl Med 2010; 2: 20ra15.
  • 150 Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol 1998; 18: 1-6.
  • 151 Fain JN, Madan AK. Insulin enhances vascular endothelial growth factor, inter-leukin-8, and plasminogen activator inhibitor 1 but not interleukin-6 release by human adipocytes. Metabolism 2005; 54: 220-226.
  • 152 Bastard JP, Piéroni L, Hainque B. Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance. Diabetes Metab Res Rev 2000; 16: 192-201.
  • 153 Faber DR, de Groot PG, Visseren FL. Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obes Rev 2009; 10: 554-563.
  • 154 Dobrovolsky AB, Titaeva EV. The fibrinolysis system: regulation of activity and physiologic functions of its main components. Biochemistry 2002; 67: 99-108.
  • 155 Natali A, Toschi E, Baldeweg S. et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 2006; 55: 1133-1140.
  • 156 Alizadeh Dehnavi R, Beishuizen ED, van de Ree MA. et al. The impact of metabolic syndrome and CRP on vascular phenotype in type 2 diabetes mellitus. Eur J Intern Med 2008; 19: 115-121.
  • 157 Meigs JB, Mittleman MA, Nathan DM. et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. J Am Med Assoc 2000; 283: 221-228.
  • 158 Takanashi K, Inukai T. Insulin resistance and changes in the blood coagulationfibrinolysis system after a glucose clamp technique in patients with type 2 diabetes mellitus. J Med 2000; 31: 45-62.
  • 159 Eliasson MC, Jansson JH, Lindahl B. et al. High levels of tissue plasminogen activator (tPA) antigen precede the development of type 2 diabetes in a longitudinal population study. The Northern Sweden MONICA study. Cardiovasc Diabetol 2003; 2: 19.
  • 160 Tousoulis D, Antoniades C, Bosinakou E. et al. Differences in inflammatory and thrombotic markers between unstable angina and acute myocardial infarction. Int J Cardiol 2007; 115: 203-207.
  • 161 Nordenhem A, Leander K, Hallqvist J. et al. The complex between tPA and PAI-1: risk factor for myocardial infarction as studied in the SHEEP project. Thromb Res 2005; 116: 223-232.
  • 162 Mannucci PM, Bernardinelli L, Foco L. et al. Tissue plasminogen activator antigen is strongly associated with myocardial infarction in young women. J Thromb Haemost 2005; 3: 280-286.
  • 163 Ridker PM, Vaughan DE, Stampfer MJ. et al. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 1993; 341: 1165-1168.
  • 164 Chandler WL, Alessi MC, Aillaud MF. et al. Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels. Circulation 1997; 96: 761-768.
  • 165 Buse JB, Ginsberg HN, Bakris GL. et al. American Heart Association; American Diabetes Association. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2007; 115: 114-126.
  • 166 Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).. UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837-853.
  • 167 Ajjan RA, Grant PJ. Cardiovascular disease prevention in patients with type 2 diabetes: The role of oral anti-diabetic agents. Diab Vasc Dis Res 2006; 3: 147-158.
  • 168 Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).. UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 854-865.
  • 169 Fanghänel G, Silva U, Sanchez-Reyes L. et al. Effects of metformin on fibrinogen levels in obese patients with type 2 diabetes. Rev Invest Clin 1998; 50: 389-394.
  • 170 Grant PJ. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab 2003; 29: 6S44-52.
  • 171 Klaff LJ, Kernoff L, Vinik AI. et al. Sulfonylureas and platelet function. Am J Med 1981; 70: 627-630.
  • 172 Ting HJ, Murray WJ, Khasawneh FT. Repurposing an old drug for a new use: glybenclamide exerts antiplatelet activity by interacting with the thromboxane A(2) receptor. Acta Pharmacol Sin 2010; 31: 150-159.
  • 173 Derosa G, Franzetti I, Gadaleta G. et al. Metabolic variations with oral antidiabetic drugs in patients with Type 2 diabetes: comparison between glimepiride and metformin. Diabetes Nutr Metab 2004; 17: 143-150.
  • 174 Khanolkar MP, Morris RH, Thomas AW. et al. Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus--an effect probably mediated by direct platelet PPARgamma activation. Atherosclerosis 2008; 197: 718-724.
  • 175 Bodary PF, Vargas FB, King SA. et al. Pioglitazone protects against thrombosis in a mouse model of obesity and insulin resistance. J Thromb Haemost 2005; 3: 2149-2153.
  • 176 Zirlik A, Leugers A, Lohrmann J. et al. Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones. Thromb Haemost 2004; 91: 674-682.
  • 177 Marx N, Wöhrle J, Nusser T. et al. Pioglitazone reduces neointima volume after coronary stent implantation: a randomized, placebo-controlled, double-blind trial in nondiabetic patients. Circulation 2005; 112: 2792-2798.
  • 178 Dormandy JA, Charbonnel B, Eckland DJ. et al. Secondary prevention of macro-vascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279-1289.
  • 179 Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457-2471.
  • 180 Home PD, Pocock SJ, Beck-Nielsen H. et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009; 373: 2125-2135.
  • 181 Pignone M, Alberts MJ, Colwell JA. et al. American Diabetes Association; American Heart Association; American College of Cardiology Foundation. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care 2010; 33: 1395-1402.
  • 182 Scheen AJ, Legrand D. Aspirin and clopidogrel resistance in patients with diabetes mellitus. Eur Heart J 2006; 27: 2900.
  • 183 Morel O, Kessler L, Ohlmann P. et al. Diabetes and the platelet: Toward new therapeutic paradigms for diabetic atherothrombosis. Atherosclerosis 2010; 212: 367-376.
  • 184 Gurbel PA, Bliden KP, DiChiara J. et al. Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation 2007; 115: 3156-3164.
  • 185 Collet JP, Montalescot G. Platelet function testing and implications for clinical practice. J Cardiovasc Pharmacol Ther 2009; 14: 157-169.
  • 186 Undas A, Brummel-Ziedins KE, Mann KG. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood 2007; 109: 2285-2292.
  • 187 Ajjan RA, Standeven KF, Khanbhai M. et al. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler Thromb Vasc Biol 2009; 29: 712-717.
  • 188 A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE).. CAPRIE Steering Committee. Lancet 1996; 348: 1329-1339.
  • 189 Bhatt DL, Marso SP, Hirsch AT. et al. Amplified benefit of clopidogrel versus aspirin in patients with diabetes mellitus. Am J Cardiol 2002; 90: 625-628.
  • 190 Angiolillo DJ, Fernandez-Ortiz A, Bernardo E. et al. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes 2005; 54: 2430-2435.
  • 191 Angiolillo DJ, Bernardo E, Ramírez C. et al. Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J Am Coll Cardiol 2006; 48: 298-304.
  • 192 Geisler T, Anders N, Paterok M. et al. Platelet response to clopidogrel is attenuated in diabetic patients undergoing coronary stent implantation. Diabetes Care 2007; 30: 372-374.
  • 193 Serebruany V, Pokov I, Kuliczkowski W. et al. Baseline platelet activity and response after clopidogrel in 257 diabetics among 822 patients with coronary artery disease. Thromb Haemost 2008; 100: 76-82.
  • 194 Wiviott SD, Braunwald E, Angiolillo DJ. et al. TRITON-TIMI 38 Investigators. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation 2008; 118: 1626-1636.
  • 195 James S, Angiolillo DJ, Cornel JH. et al. PLATO Study Group. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J 2010; 31: 3006-3016.
  • 196 Lau DC, Dhillon B, Yan H. et al. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 2005; 288: H2031-2041.
  • 197 Kopp HP, Kopp CW, Festa A. et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol 2003; 23: 1042-1047.
  • 198 Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116: 1793-1801.
  • 199 Haffner SM, Greenberg AS, Weston WM. et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679-684.
  • 200 Chu NV, Kong AP, Kim DD. et al. Differential effects of metformin and troglita-zone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002; 25: 542-549.
  • 201 Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol 2001; 21: 1712-1719.
  • 202 Pierce JW, Read MA, Ding H. et al. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol 1996; 156: 3961-3969.
  • 203 Williamson RT. On the Treatment of Glycosuria and Diabetes Mellitus with Sodium Salicylate. Br Med J 1901; 1: 760-762.
  • 204 Arkan MC, Hevener AL, Greten FR. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191-198.