Subscribe to RSS
DOI: 10.1590/0004-282X20160178
Modulation of the ultradian human nasal cycle by sleep stage and body position
Modulação do ciclo nasal humano ultradiano pelo estágio do sono e a posição corporal This research was supported by USAMRAA W81XWH-09-1-0467, and by the Eleanor Dana Center for Sleep Disorders, University of Pennsylvania, Philadelphia, USA.ABSTRACT
Objective:
The nasal cycle, which is present in a significant number of people, is an ultradian side-to-side rhythm of nasal engorgement associated with cyclic autonomic activity. We studied the nasal cycle during REM/non-REM sleep stages and examined the potentially confounding influence of body position on lateralized nasal airflow.
Methods:
Left- and right-side nasal airflow was measured in six subjects during an eight-hour sleep period using nasal thermistors. Polysomnography was performed. Simultaneously, body positions were monitored using a video camera in conjunction with infrared lighting.
Results:
Significantly greater airflow occurred through the right nasal chamber (relative to the left) during periods of REM sleep than during periods of non-REM sleep (p<0.001). Both body position (p < 0.001) and sleep stage (p < 0.001) influenced nasal airflow lateralization.
Conclusions:
This study demonstrates that the lateralization of nasal airflow and sleep stage are related. Some types of asymmetrical somatosensory stimulation can alter this relationship.
RESUMO
Objetivo:
O ciclo nasal é um ritmo ultradiano de lado a lado de ingurgitamento associado com o ciclo da atividade autçnoma. O objetivo deste estudo foi abordar a questão assim como a relação presente entre o ciclo nasal e os estágios de sono REM/não-REM. Também analisamos a confusão potencial da influência da posição corporal no fluxo de ar nasal.
Métodos:
Mensuramos o ciclo nasal em seis sujeitos durante um sono de oito horas usando um termistor nasal. Foi realizada uma polissonografia. Simultaneamente, nós monitoramos a posição corporal usando uma câmera de vídeo juntamente com luzes infravermelhas.
Resultados:
Um fluxo de ar maior ocorreu através da cavidade nasal direita durante as fases de sono REM do que nos períodos de sono não-REM (p < 0,001). Assim como a posição corporal [F(2.2340) = 86,99, p < 0,001] e o estágio de sono [F(1.2340) = 234.82, p < 0,001] influenciaram a lateralização do fluxo de ar nasal.
Conclusões:
Este estudo evidencia que a lateralização do fluxo de ar nasal e o estágio do sono estão relacionados. Alguns tipos de estimulação somatosensitiva assimétrica podem alterar esta relação.
Support:
This research was supported by USAMRAA W81XWH-09-1-0467, and by the Eleanor Dana Center for Sleep Disorders, University of Pennsylvania, Philadelphia, USA.
Publication History
Received: 12 January 2016
Accepted: 24 August 2016
Article published online:
06 September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Mirza N, Kroger H, Doty RL. Influence of age on the ‘nasal cycle’. Laryngoscope. 1997;107(1):62-6. doi:10.1097/00005537-199701000-00014
- 2 Shilenkova W, Kozlov VS. [A nasal cycle in healthy children]. Vestn Otorinolaringol. 2008;(1):11-6. Russian.
- 3 Eccles R. The domestic pig as an experimental animal for studies on the nasal cycle. Acta Otolaryngol. 1978;85(5-6):431-6. doi:10.3109/00016487809121472
- 4 Saroha D, Bottrill I, Saif M, Gardner B. Is the nasal cycle ablated in patients with high spinal cord trauma?. Clin Otolaryngol Allied Sci. 2003;28(2):142-5. doi:10.1046/j.1365-2273.2003.00679.x
- 5 Eccles R. The central rhythm of the nasal cycle. Acta Otolaryngol. 1978;86(5-6):464-8. doi:10.3109/00016487809107526
- 6 Davies AM, Eccles R. Reciprocal changes in nasal resistance to airflow caused by pressure applied to the axilla. Acta Otolaryngol. 1985;99(1-2):154-9. doi:10.3109/00016488509119158
- 7 Haight JJ, Cole P. Reciprocating nasal airflow resistances. Acta Otolaryngol. 1984;97(1-2):93-8. doi:10.3109/00016488409130968
- 8 Werntz DA, Bickford RG, Bloom FE, Shannahoff-Khalsa DS. Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Hum Neurobiol. 1983;2(1):39-43.
- 9 Goldstein L, Stoltzfus NW, Gardocki JF. Changes in interhemispheric amplitude relationships in the EEG during sleep. Physiol Behav. 1972;8(5):811-5. doi:10.1016/0031-9384(72)90289-2
- 10 Armitage R, Hoffmann R, Loewy D, Moffitt A. Variations in period-analysed EEG asymmetry in REM and NREM sleep. Psychophysiology. 1989;26(3):329-36. doi:10.1111/j.1469-8986.1989.tb01928.x
- 11 Moffitt A, Hoffmann R, Wells R, Armitage R, Pigeau R, Shearer J. Individual differences in pre- and post-awakening correlates of dream reports following awakening from different stages of sleep. Psychiatr J Univ Ott. 1982;7:111-25.
- 12 Pivik RT, Bylsma F, Busby K. Sawyer S. Interhemispheric EEG changes: relationship to sleep and dreams in gifted adolescents. Psychiatr Univ Ottawa. 1982;7:56-76.
- 13 Alexiev AD, Roth B. Some peculiar changes in the pattern of respiration connected with REM sleep: a preliminary report. Electroencephalogr Clin Neurophysiol. 1978;44(1):108-11. doi:10.1016/0013-4694(78)90110-4
- 14 Hudgel DW, Robertson DW. Nasal resistance during wakefulness and sleep in normal man. Acta Otolaryngol. 1984;98(1-2):130-5. doi:10.3109/00016488409107544
- 15 Pallanch JF, McCaffrey TV, Kern EB. Normal nasal resistance. Otolaryngol Head Neck Surg. 1985;93:778-85.
- 16 Rechtschaffen A, Kales A. A Manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: Public Health Service; 1968.
- 17 Allocca JA, Stuart A. Transducers: theory and application. Reston, VA: Reston; 1984.
- 18 Behrens JT. Principles and procedures of exploratory data analysis. Psychol Methods. 1997;2(2):131-60. doi:10.1037/1082-989X.2.2.131
- 19 Rao S, Potdar A. Nasal airflow with body in various positions. J Appl Physiol. 1970;28(2):162-5.
- 20 Haight JS, Cole P. Is the nasal cycle an artifact? The role of asymmetrical postures. Laryngoscope. 1989;99(5):538-41. doi:10.1288/00005537-198905000-00013
- 21 Lal D, Gorges ML, Ungkhara G, Reidy PM, Corey JP. Physiological change in nasal patency in response to changes in posture, temperature, and humidity measured by acoustic rhinometry. Am J Rhinol. 2006;20(5):456-62. doi:10.2500/ajr.2006.20.2939
- 22 Kimura A, Chiba S, Capasso R, Yagi T, Ando Y, Watanabe S et al. Phase of nasal cycle during sleep tends to be associated with sleep stage. Laryngoscope. 2013;123(8):2050-5. doi:10.1002/lary.23986
- 23 Rohrmeier C, Schittek S, Ettl T, Herzog M, Kuehnel TS. The nasal cycle during wakefulness and sleep and its relation to body position. Laryngoscope. 2014;124(6):1492-7. doi:10.1002/lary.24546
- 24 Haight JS, Cole P. Unilateral nasal resistance and asymmetrical body pressure. J Otolaryngol Suppl. 1986;16 1-31.
- 25 Brown TH, McAfee DA. Long-term synaptic potentiation in the superior cervical ganglion. Science. 1982;215(4538):1411-3. doi:10.1126/science.6278593
- 26 Atanasov AT, Dimov PD. Nasal and sleep cycle: possible synchronization during night sleep. Med Hypotheses. 2003;61(2):275-7. doi:10.1016/S0306-9877(03)00169-5
- 27 McPartland RJ, Kupfer DJ. Rapid eye movement sleep cycle, clock time and sleep onset. Electroencephalogr Clin Neurophysiol. 1978;45(2):178-85. doi:10.1016/0013-4694(78)90002-0
- 28 Gordon HW, Stoffer DS, Lee PA. Ultradian rhythms in specialized cognitive function. J Clin Exp Neurophysiol. 1990;12:40.
- 29 Lanfranchi PA, Fradette L, Gagnon JF, Colombo R, Montplaisir J. Cardiac autonomic regulation during sleep in idiopathic REM sleep behavior disorder. Sleep. 2007;30(8):1019-25.