Nuklearmedizin 2013; 52(03): 101-106
DOI: 10.3413/Nukmed-0513-12-06
Original article
Schattauer GmbH

18F-FDG PET/CT findings in patients with Kikuchi disease

18F-FDG PET/CT bei Patienten mit Kikuchi-Syndrom
E. Kong
1   Departement of Nuclear Medicine, Yeungnam University Hospital
,
K. Chun
1   Departement of Nuclear Medicine, Yeungnam University Hospital
,
Y. Hong
2   Departement of Internal Medicine, Yeungnam University Hospital
,
J. Hah
3   Departement of Paediatrics, Yeungnam University Hospital
,
I. Cho
1   Departement of Nuclear Medicine, Yeungnam University Hospital
› Author Affiliations
Further Information

Publication History

received: 28 June 2012

accepted in revised form: 07 March 2012

Publication Date:
30 December 2017 (online)

Summary

Purpose: Kikuchi disease (KD) is a benign and self-limited syndrome characterized by cervical lymphadenopathy. This study evaluated 18F-fluorodeoxyglucose positron emission tomography/ computed tomography (FDG PET/ CT) findings in patients with KD and analyzed their imaging features. Patients, material, methods: We evaluated the FDG PET/CT findings of 22 patients (14 men, 8 women) with KD, ranging in age from 9 to 73 years. All patients had been diagnosed based on the pathological findings of biopsy. We examined the locations, metabolic activity and size of hypermetabolic lymph nodes (LNs) on FDG PET/CT imaging with medical history including laboratory results. Results: Among the 22 patients, we identified 619 hypermetabolic LNs which had maximum standard uptake value (SUVmax) above 3.0. The 16 patients were studied with FDG PET/CT to identify the cause of fever, another 5 patients for their neck masses, and the remaining patient for his left inguinal mass. Hypermetabolic LNs were noted in neck (18 bilaterally, 2 right, 1 left) of 21 patients, axilla of 10, mediastinum of 9, abdomen of 17, pelvis of 6, and inguinal area of 3. The SUVmax of FDG uptake in affected LNs by patient base analysis were 6.2–29.4. Of the 619 hypermetabolic LNs identified, 440 LNs (71.1%) were less than 10 mm in their short axis determined by CT, and were occasionally aggregated. No patient showed solid organ hypermetabolic lesion in FDG PET/CT. Conclusion: Kikuchi disease could present multiple hypermetabolic LNs in body on FDG PET/CT. Based on the physical findings, consideration of the generalized distribution of the relatively small-sized hypermetabolic LNs, FDG PET/CT may be useful as a diagnostic tool in cases of Kikuchi disease.

Zusammenfassung

Das Kikuchi-Syndrom (KD) ist eine benigne und selbstlimitierende Erkrankung, die durch eine zervikale Lymphadenopathie gekennzeichnet ist. Ziel: In dieser Studie wurden Befunde einer 18F-Fluordesoxyglukose-Positronenemissionstomographie/ Computertomographie (FDG-PET/CT) ausgewertet und die Merkmale der Aufnahmen analysiert. Patienten, Material, Methoden: Wir haben die Befunde einer FDG PET/CT von 22 Patienten (14 Männer, 8 Frauen) mit KD im Alter von 9 bis 73 Jahren ausgewertet. Bei allen Patienten war die Diagnose anhand pathologischer Biopsiebefunde gestellt worden. Wir verglichen Lokalisation, metabolische Aktivität und Größe der hypermetabolischen Lymphknoten (LN) auf den FDG-PET/CT-Aufnahmen mit der medizinischen Anamnese und den Labor befunden. Ergebnisse: Bei den 22 Patienten identifizierten wir 610 hypermetabolische LN mit einem maximalen standardisierten Aufnahmewert (SUVmax) über 3,0. Die Untersuchung mittels FDG-PET/CT erfolgte bei 16 Patienten zur Abklärung des Fiebers, bei weiteren 5 Patienten wegen der Schwellungen am Hals und bei dem übrigen Patienten wegen einer inguinalen Schwellung im linken Leistenbereich. Hyper metabolische LN fanden wir am Hals (18 bilateral, 2 rechts und 1 links) bei 21 Patienten, in der Axilla bei 10, mediastinal bei 9, abdominal bei 17, im Becken bei 6 und inguinal bei 3. Die SUVmax der FDG-Aufnahme in den betroffenen LN lag, bezogen auf die Analyse des Patientenkollektivs, bei 6,2–29,4. Gemäß CT hatten 440 LN (71,1%) der 619 identifizierten hypermetabolischen LN eine kurze Achse unter 10 mm und waren gelegentlich verklumpt. Bei keinem Patienten fanden sich im FDG-PET/CT hypermetabolische Läsionen in soliden Organen. Schlussfolgerung: Bei Patienten mit Kikuchi-Syndrom können durch FDG-PET/CT multiple hypermetabolische Lymphknoten im Körper festgestellt werden. Ausgehend von körperlichen Befunden unter Berücksichtigung der generalisierten Ausbreitung von relativ kleinen hypermetabolischen Lymphknoten könnte die FDG-PET/CT-Bildgebung ein sinnvolles diagnostisches Verfahren bei Patienten mit Kikuchi-Syndrom darstellen.

 
  • References

  • 1 Atwater AR, Longley BJ, Aughenbaugh WD. Kikuchi’s disease: case report and systematic review of cutaneous and histopathologic presentations. J Am Acad Dermatol 2008; 59: 130-136.
  • 2 Bosch X, Guilabert A, Miquel R, Campo E. Enigmatic Kikuchi-Fujimoto disease: a comprehensive review. Am J Clin Pathol 2004; 122: 141-152.
  • 3 Bosch X, Guilabert A. Kikuchi-Fujimoto disease. Orphanet J Rare Dis 2006; 1: 18.
  • 4 Chiu CF, Chow KC, Lin TY. et al. Virus infection in patients with histiocytic necrotizing lymphadenitis in Taiwan. Detection of Epstein-Barr virus, type I human T-cell lymphotropic virus, and parvovirus B19. Am J Clin Pathol 2000; 113: 774-781.
  • 5 Defawe OD, Hustinx R, Defraigne JO. et al. Distribution of F-18 fluorodeoxyglucose (18F FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin Nucl Med 2005; 30: 340-341.
  • 6 Dorfman RF, Berry GJ. Kikuchi’s histiocytic necrotizing lymphadenitis: an analysis of 108 cases with emphasis on differential diagnosis. Semin Diagn Pathol 1988; 5: 329-345.
  • 7 Eisenhauer EA, Therasse P, Bogaerts J. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228-247.
  • 8 Fujimoto Y, Kojima Y, Yamaguchi K. Cervical subacute necrotizing lymphadenitis: a new clinico-pathologic entity. Naika 1972; 30: 920-927.
  • 9 Gotthardt M, Bleeker-Rovers CP, Boerman OC, Oyen WJ. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J Nucl Med 2010; 51: 1937-1949.
  • 10 Ishimori T, Saga T, Mamede M. et al. Increased 18F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. J Nucl Med 2002; 43: 658-663.
  • 11 Ito K, Morooka M, Kubota K. Kikuchi disease: 18F-FDG positron emission tomography/computed tomography of lymph node uptake. Jpn J Radiol 2010; 28: 15-19.
  • 12 Kato H, Kanematsu M, Kato Z. et al. MR imaging findings of cervical lymphadenopathy in patients with Kikuchi disease. Eur J Radiol 2011; 80: e576-581.
  • 13 Kikuchi M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytes: a clinicopathological study. Acta Hematol Jpn 1972; 35: 379-380.
  • 14 Kim CH, Hyun OJ, Yoo Ie R. et al. Kikuchi disease mimicking malignant lymphoma on FDG PET/ CT. Clin Nucl Med 2007; 32: 711-712.
  • 15 Kucukardali Y, Solmazgul E, Kunter E. et al. Kikuchi-Fujimoto disease: analysis of 244 cases. Clin Rheumatol 2007; 26: 50-54.
  • 16 Kuo TT. Kikuchi’s disease (histiocytic necrotizing lymphadenitis). A clinicopathologic study of 79 cases with an analysis of histologic subtypes, immunohistology, and DNA ploidy. Am J Surg Pathol 1995; 19: 798-809.
  • 17 Kwon SY, Kim TK, Kim YS. et al. CT findings in Kikuchi disease: analysis of 96 cases. AJNR Am J Neuroradiol 2004; 25: 1099-1102.
  • 18 Lin HC, Su CY, Huang CC. et al. Kikuchi’s disease: a review and analysis of 61 cases. Otolaryngol Head Neck Surg 2003; 128: 650-653.
  • 19 Mugnaini EN, Watson T, Guccion J, Benator D. Kikuchi disease presenting as a flu-like illness with rash and lymphadenopathy. Am J Med Sci 2003; 325: 34-37.
  • 20 Onciu M, Medeiros LJ. Kikuchi-Fujimoto lymphadenitis. Adv Anat Pathol 2003; 10: 204-211.
  • 21 Santana A, Lessa B, Galrao L. et al. Kikuchi-Fujimoto’s disease associated with systemic lupus erythematosus: case report and review of the literature. Clin Rheumatol 2005; 24: 60-63.
  • 22 Som PM, Curtin HD, Mancuso AA. Imaging-based nodal classification for evaluation of neck metastatic adenopathy. AJR Am J Roentgenol 2000; 174: 837-844.
  • 23 Tsujikawa T, Tsuchida T, Imamura Y. et al. Kikuchi-Fujimoto disease: PET/CT assessment of a rare cause of cervical lymphadenopathy. Clin Nucl Med 2011; 36: 661-664.
  • 24 Youk JH, Kim EK, Ko KH, Kim MJ. Sonographic features of axillary lymphadenopathy caused by Kikuchi disease. J Ultrasound Med 2008; 27: 847-853.
  • 25 Zhang MJ, Xiao L, Zhu YH. et al. Lymph node uptake of 18F-fluorodeoxyglucose detected with positron emission tomography/computed tomography mimicking malignant lymphoma in a patient with Kikuchi disease. Clin Lymphoma Myeloma Leuk 2010; 10: 477-479.