Nuklearmedizin 2013; 52(06): 228-234
DOI: 10.3413/Nukmed-0590-13-05
Original article
Schattauer GmbH

Catecholamines influence myocardial 123I MIBG uptake in neuroblastoma patients

Katecholamine beeinflussen die myokardiale 123I-MIBG-Aufnahme in Neuroblastom-Patienten
R. L. F. van der Palen
1   Department of Paediatric Haematology and Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
2   Department of Paediatric Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
,
B. F. Bulten
3   Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
,
A. M. C. Mavinkurve-Groothuis
1   Department of Paediatric Haematology and Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
,
L. Bellersen
4   Department of Cardiology, Radboud University Nijmegen Medical Centre, The Netherlands
,
H. W. M. van Laarhoven
5   Department of Medical Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
6   Department of Medical Oncology, Academic Medical Center, University of Amsterdam, The Netherlands
,
L. Kapusta
7   Children’s Heart Centre, Radboud University Nijmegen Medical Centre, The Netherlands
8   Paediatric Cardiology Unit, Edith Wolfson Medical Center, Holon, Israel
,
L. F. de Geus-Oei
3   Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
› Author Affiliations
Further Information

Publication History

received: 20 May 2013

accepted in revised form: 03 September 2013

Publication Date:
12 January 2018 (online)

Summary

Aim: Cardiac 123I metaiodobenzylguanidine (MIBG) imaging can be influenced by several factors. We evaluated the relationship between catecholamine measurements and cardiac 123I MIBG uptake in neuroblastoma patients. Patients, methods: 30 neuroblastoma patients were retrospectively assessed on cardiac 123I MIBG uptake and urinary catecholamine dopamine and metabolites, homovanillic acid (HVA) and vanillylmandelic acid (VMA). Cardiac 123I MIBG uptake was quantified by heart-to-mediastinum (H/M) ratios, which were calculated into standard deviation scores (SDS) using age-specific reference values. Results: In 17 (57%) and 12 patients (40%) H/M ratio measurements were below –1.0 and –2.0 SDS at diagnosis. A significant inverse correlation between the average of urine metabolites HVA and VMA, and H/M ratio SDS was observed (r -.39, p = 0.04). Furthermore, there was a significant correlation between the urinary catecholamine metabolite HVA and H/M ratio SDS (r -.40, p = 0.04). Conclusion: Routine calculation of H/M ratios in 123I MIBG scintigrams of neuroblastoma patients is not helpful because it will not identify cardiac ventricular dysfunction in this patient category. A low H/M ratio on 123I MIBG scintigraphy is explained by increased cathecholamine levels secreted by neuroblastoma tumours.

Zusammenfassung

Ziel: Myokardiale 123I-Metaiodbenzylguanidin-( MIBG)-Szintigraphie kann durch verschiedene Faktoren beeinflusst werden. Wir untersuchten die Beziehung zwischen der Menge von Katecholaminen und myokardialer 123I-MIBG-Aufnahme bei Neuroblastom-Patienten. Patienten, Methoden: Bei 30 Neuroblastom- Patienten wurden retrospektiv eine myokardiale 123I-MIBG-Aufnahme sowie das Katecholamin Dopamin und dessen Metaboliten, Homovanillinsäure (HVA) und Vanillinmandelsäure (VMA) im Urin beurteilt. Die myokardiale 123I-MIBG-Aufnahme wurde mit dem Herz-/Mediastinum (H/M)-Quotienten quantifiziert und mit altersspezifischen Referenzwerten als Z-Score-Wert (SDS) ausgedrückt. Ergebnisse: Bei 17 (57%) Patienten war der H/M-Quotient unter –1.0 und bei 12 Patienten (40%) unter –2.0 SDS bei Diagnosestellung. Er wurde sowohl eine inverse Korrelation zwischen der durchschnittlichen Menge der Urin-Katecholamin-Metaboliten HVA und VMA und dem H/M-Quotienten SDS (r – .39, p = 0,04) als auch eine inverse Korrelation zwischen dem Urin-Katecholamine HVA und dem H/M-Quotienten SDS (r -.40, p = 0.04) beobachtet. Schlussfolgerung: Als Routineanalyse wird der H/M-Quotient eines myokardialen 123I-MIBG-Szintigramms in Neuroblastom-Patienten nicht empfohlen, weil es eine kardiale Dysfunktion zum Zeitpunkt der Diagnose nicht identifizieren kann. Ein niedriger H/M-Quotient eines 123I-MIBGSzintigramms wird durch die erhöhte Katecholaminausschüttung des Neuroblastom- Tumors verursacht.

 
  • References

  • 1 Boubaker A, Bischof Delaloye A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging 2008; 52: 388-402.
  • 2 Brodeur GM, Pritchard J, Berthold F. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993; 11: 1466-1477.
  • 3 Bulten BF, van der Palen RL, van Laarhoven HW. et al. Interobserver variability of heart-to-mediastinum ratio in I-123 MIBG sympathetic imaging. Curr Cardiol Rep 2012; 14: 389-391.
  • 4 Carrio I, Cowie MR, Yamazaki J. et al. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010; 3: 92-100.
  • 5 Chen W, Botvinick EH, Alavi A. et al. Age-related decrease in cardiopulmonary adrenergic neuronal function in children as assessed by 123I metaiodobenzylguanidine imaging. J Nucl Cardiol 2008; 15: 73-79.
  • 6 Chen W, Cao Q, Dilsizian V. Variation of Heart-to- Mediastinal Ratio in 123I-mIBG Cardiac Sympathetic Imaging: Its Affecting Factors and Potential Corrections. Curr Cardiol Rep 2011; 13: 132-137.
  • 7 De Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L. et al. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med 2011; 52: 560-571.
  • 8 Eldadah BA, Pacak K, Eisenhofer G. et al. Cardiac uptake-1 inhibition by high circulating norepinephrine levels in patients with pheochromocytoma. Hypertension 2004; 43: 1227-1232.
  • 9 Estorch M, Carrio I, Berna L. et al. Myocardial iodine- labeled metaiodobenzylguanidine 123 uptake relates to age. J Nucl Cardiol 1995; 2: 126-132.
  • 10 Ewer MS, Ali MK, Mackay B. et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving adriamycin. J Clin Oncol 1984; 2: 112-117.
  • 11 Franzius C, Schmidt M, Hero B. et al. Procedure guidelines for MIBG-scintigraphy in children. Nuklearmedizin 2008; 47: 132-138.
  • 12 Giammarile F, Boneu A, Edeline V. et al. Guide de réalisation de la scintigraphie à la méta-iodobenzylguanidine (mIBG) en oncologie pédiatrique. Med Nucl 2000; 24: 35-42.
  • 13 Glowniak JV, Kilty JE, Amara SG. et al. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters. J Nucl Med 1993; 34: 1140-1146.
  • 14 Haider N, Baliga RR, Chandrashekhar Y. et al. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. JACC Cardiovasc Imaging 2010; 3: 71-75.
  • 15 Izbicki T, Bozek J, Perek D. et al. Urinary dopamine/ noradrenaline and dopamine/vanillylmandelic acid ratios as a reflection of different biology of adrenergic clones in children’s neuroblastic tumors. J Pediatr Surg 1991; 26: 1230-1234.
  • 16 Kohnert K, Lerch H, Thelen M. et al. Follow up control of stage IV neuroblastoma: 123I-MIBG scintigraphy, bone scintigraphy and catecholamine metabolites. Nuklearmedizin 1996; 35: 220-224.
  • 17 Lassmann M, Biassoni L, Monsieurs M. et al. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2007; 34: 796-798.
  • 18 Mardon K, Montagne O, Elbaz N. et al. Uptake-1 carrier downregulates in parallel with the beta-adrenergic receptor desensitization in rat hearts chronically exposed to high levels of circulating norepinephrine: implications for cardiac neuroimaging in human cardiomyopathies. J Nucl Med 2003; 44: 1459-1466.
  • 19 Merlet P, Valette H, Dubois-Rande JL. et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992; 33: 471-477.
  • 20 Morrisey JL, Shihabi ZK. Assay of urinary 4-hdyroxy- 3-methoxymandelic (vanillylmandelic) acid by liquid chromatography with electrochemical detection. Clin Chem 1979; 25: 2043-2045.
  • 21 Nakajo M, Shapiro B, Glowniak J. et al. Inverse relationship between cardiac accumulation of meta- [131I]iodobenzylguanidine (131I MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med 1983; 24: 1127-1134.
  • 22 Olivier P, Colarinha P, Fettich J. et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging 2003; 30: B45-B50.
  • 23 Park JR, Bagatell R, London WB. et al. Children’s Oncology Group’s 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer 2013; 60: 985-993.
  • 24 Pettersen MD, Du W, Skeens ME. et al. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr 2008; 21: 922-934.
  • 25 Roy A, Guthrie S, Karoum F. et al. High intercorrelations among urinary outputs of norepinephrine and its major metabolites. A replication in depressed patients and controls. Arch Gen Psychiatry 1988; 45: 158-161.
  • 26 Shouda S, Kurata C, Mikami T. et al. Effects of extrinsically elevated plasma norepinephrine concentration on myocardial 123I-MIBG kinetics in rats. J Nucl Med 1999; 40: 2088-2093.
  • 27 Sisson JC, Frager MS, Valk TW. et al. Scintigraphic localization of pheochromocytoma. N Engl J Med 1981; 305: 12-17.
  • 28 Solanki KK, Bomanji J, Moyes J. et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992; 13: 513-521.
  • 29 Strenger V, Kerbl R, Dornbusch HJ. et al. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr Blood Cancer 2007; 48: 504-509.
  • 30 Suga K, Ogasawara N, Ariga M. et al. Alteration of myocardial metaiodobenzylguanidine uptake after treatment of phaeochromocytoma and neuroblastoma. Eur J Nucl Med 2000; 27: 574-582.
  • 31 Westerink B. Analysis of trace amounts of catecholamines and related compounds in brain tissue: a study near the detection limit of liquid chromatography with electrochemical detection. J Liq Chromatogr 1983; 6: 2337-2351.
  • 32 Zambrano E, Reyes-Mugica M. Hormonal activity may predict aggressive behavior in neuroblastoma. Pediatr Dev Pathol 2002; 5: 190-199.