RSS-Feed abonnieren
DOI: 10.3414/ME0551
A Framework for Representation and Visualization of 3D Shape Variability of Organs in an Interactive Anatomical Atlas
Publikationsverlauf
received:
07. März 2008
accepted:
09. März 2008
Publikationsdatum:
17. Januar 2018 (online)
Summary
Objectives: Computerized anatomical 3D atlases allow interactive exploration of the human anatomy and make it easy for the user to comprehend complex 3D structures and spatial interrelationships among organs. Besides the anatomy of one reference body inter-individual shape variations of organs in a population are of interest as well. In this paper, a new framework for representation and visualization of 3D shape variability of anatomical objects within an interactive 3D atlas is presented.
Methods: In the VOXEL-MAN atlases realistic 3D visualizations of organs in high quality are generated for educational purposes using volume-based object representations. We extended the volume-based representation of organs to enable the 3D visualization of organs’ shape variability in the atlas. Therefore, the volume-based representation of the inner organs in the atlas is combined with a medial representation of organs of a population creating a compact description of shape variability.
Results: With the framework developed different shape variations of an organ can be visualized within the context of a volume-based anatomical model. Using shape models of the kidney and the breathing lung as examples we demonstrate new possibilities such an approach offers for medical education. Furthermore, attributes like gender, age or pathology as well as shape attributes are assigned to each shape variant which can be used for selecting specific organs of the population.
Conclusions: The inclusion of anatomical variability in a 3D interactive atlas presents considerable challenges, since such a system offers the chance to explore how anatomical structures vary in large populations, across age, gender and races, and in different disease states. The framework presented is a basis for the development of specialized variability atlases that focus e.g. on specific regions of the human body, groups of organs or specific topics of interest.
-
References
- 1 Ackerman MJ. The Visible Human Project: A Resource for Anatomical Visualization. Medinfo. 1998 pp 1030-1032.
- 2 Spitzer V, Ackerman M, Scherzinger A, Withlock D. The Visible Human Male: A Technical Report. J Am Med Inform Assoc 1996; 3 (02) 118-130.
- 3 Zhang SX, Heng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, Liao RX, Li K, Cui GY, Guo YL, Yang XP, Liu GJ, Shan JL, Liu JJ, Zhang WG, Chen XH, Chen JH, Wang J, Chen W, Lu M, You J, Pang XL, Xiao H, Xie YM, Chun-Yiu Cheng J. The Chinese Visible Human (CVH) Datasets Incorporate Technical and Imaging Advances on Earlier Digital Humans. J Anat 2004; 204: 165-173.
- 4 Riemer M, Park JS, Chung MS, Handels H. Improving the 3D Visualization of the Visible Korean Human via Data Driven 3D Segmentation in RGB Color. Space World Congress on Medical Physics and Biomedical Engineering. 2006, 14 (31). Springer, 2007 pp 4200-4203.
- 5 Höhne KH, Pflesser B, Pommert A, Riemer M, Schubert R, Schiemann T, Tiede U, Schumacher U. A Realistic Model of Human Structure from the Visible Human Data. Methods Inf Med 2001; 40: 83-89.
- 6 Structural Informatics Group.. Interactive Atlases: Digital Anatomist Project. Dept. of Biological Structure, University of Washington; Seattle, WA: 2004. http://www9.biostr.washington.edu/da.html.
- 7 Bergman RA, Adel K, Miyauchi R. Illustrated Encyclopedia of Human Anatomic Variation. University of Iowa; 2004. http://www.anatomyatlases.org/AnatomicVariants/Anatomy HP.shtml.
- 8 Toga AW, Thompson PM. Multimodal Brain Atlases. In: Wong S. (ed.). Advances in Biomedical Image Databases. New York: Academic Press; 1999
- 9 Mazziotta JC. A Probabilistic Atlas and Reference System for the Human Brain. In: Toga RW, Mazziotta JC. Brain Mapping – The Methods. San Diego: Academic Press; 2002. pp 727-755.
- 10 Thompson PM, Mega MS, Woods R, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW. Cortical Change in Alzheimer’s Disease Detected with a Disease-specific Population-based Brain Atlas. Cereb Cortex 2001; 11 (01) 1-16.
- 11 Bailleul J, Ruan S, Bloyet D. Automatic atlas-based Building of Point Distribution Model for Segmentation of Anatomical Structures from Brain MRI. Proc Signal Processing and its Applications 2003; 2: 629-630.
- 12 Joshi S, Pizer SM, Fletcher PT, Yushkevich P, Thall A, Marron JS. Multiscale Deformable Model Segmentation and Statistical Shape Analysis using Medial Descriptions. IEEE Trans Med Imaging 2002; 21: 538-550.
- 13 Golland P, Grimson WEL, Kikinis R. Statistical Shape Analysis Using Fixed Topology Skeletons: Corpus Callosum Study. Information Processing in Medical Imaging (IPMI). 1999 pp 382-387.
- 14 Staib L, Duncan J. Boundary Finding with Parametrically Models. IEEE PAMI 1992; 14 (11) 1061-1075.
- 15 Kelemen A, Szekely G, Gerig G. Elastic Model-Based Segmentation of 3D Neurological Data Sets. IEEE Trans Med Imaging 1999; 18: 828-839.
- 16 Styner M, Gerig G. Hybrid Boundary-medial Shape Description for Biologically Variable Shapes. Proc IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA). 2000 pp 235-242.
- 17 Cootes TF, Taylor CJ. Active Shape Models – “Smart Snakes”. In: Hogg et al. (eds.). BMVC92. Proceedings of the British Machine Vision Conference. Berlin: Springer-Verlag; 1992. pp 266-275.
- 18 Tiede U, Schiemann T, Höhne KH. High Quality Rendering of Attributed Volume Data. In: Ebert D, Hagen H, Rushmeier H. (eds.). Proc. IEEE Visualization 1998. Research Triangle Park, NC: 1998. pp 255-262.
- 19 Pommert A, Schubert R, Riemer M, Schiemann T, Höhne KH. Symbolic Modeling of Human Anatomy for Visualization and Simulation. In: Robb RA. (ed.). Visualization in Biomedical Computing 1994. Rochester; 1994. pp 412-423.
- 20 Höhne KH, Pflesser B, Pommert A, Riemer M, Schubert R, Tiede U. A New Representation of Knowledge Concerning Human Anatomy and Function. Nature Med 1995; 1 (06) 506-511.
- 21 Pizer SM, Fritsch D, Yushkevich P, Johnson V, Chaney E. Segmentation, Registration, and Measurement of Shape Variation via Image Object Shape. IEEE Trans Med Imaging 1999; 18: 851-865.
- 22 Pizer SM, Fletcher PT, Joshi SC, Stough J, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash G, Glotzer JM, Jiroutek MR, Lu C, Muller KE, Tracton G, Yushkevich PA, Chaney E L. Deformable M-reps for 3D Medical Image Segmentation. Int J Comp Vis 2003; 55: 85-106.
- 23 Blum TO. A Transformation for Extracting New Descriptors of Shape. In: Wathen-Dunn (ed.). Models for the Perception of Speech and Visual Form. Cambridge, MA: MIT Press; 1967. pp 362-380.
- 24 Jollife IT. Principal Component Analysis. Springer-Verlag; 1986
- 25 Fletcher PT, Lu C, Joshi S. Statistics of Shape via Principal Component Analysis on Lie Groups. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). 2003 pp 95-101.
- 26 Fletcher PT, Joshi S, Lu C Pizer SM. Gaussian Distribution on Lie Groups and their Application to Statistical Shape Analysis. In: Taylor C, Noble JA. (eds.) Information Processing in Medical Imaging (IPMI) 2003 pp 450-462.
- 27 Ehrhardt J, Werner R, Frenzel T, Säring D, Lu W, Low D, Handels H. Optical Flow based Method for Improved Reconstruction of 4D CT Data Sets Acquired During Free Breathing. Med Phys 2007; 34 (02) 711-721.
- 28 Werner R, Ehrhardt J, Frenzel T, Säring D, Lu W, Low D, Handels H. Motion Artifact Reducing Reconstruction of 4D CT Image Data for the Analysis of Respiratory Dynamics. Methods Inf Med 2007; 46: 254-260.
- 29 Ehrhardt J, Säring D, Handels H. Structure-preserving Interpolation of Temporal and Spatial Image Sequences using an Optical Flow-based Method. Methods Inf Med 2007; 46: 300-307.