Methods Inf Med 2011; 50(01): 36-50
DOI: 10.3414/ME09-01-0074
Original Articles
Schattauer GmbH

A Business Rules Design Framework for a Pharmaceutical Validation and Alert System

A. Boussadi
1   Université Paris Descartes (Paris 5), Paris, France and laboratoire de recherche en ingénierie des connaissances et e-santé (INSERM UMR_S 872, Eq 20), Paris, France
3   Georges Pompidou University Hospital (HEGP), Paris, France
,
C. Bousquet
1   Université Paris Descartes (Paris 5), Paris, France and laboratoire de recherche en ingénierie des connaissances et e-santé (INSERM UMR_S 872, Eq 20), Paris, France
2   University of Saint Etienne, Department of Public Health and Medical Informatics, St.-Etienne, France
,
B. Sabatier
3   Georges Pompidou University Hospital (HEGP), Paris, France
,
T. Caruba
3   Georges Pompidou University Hospital (HEGP), Paris, France
,
P. Durieux
1   Université Paris Descartes (Paris 5), Paris, France and laboratoire de recherche en ingénierie des connaissances et e-santé (INSERM UMR_S 872, Eq 20), Paris, France
3   Georges Pompidou University Hospital (HEGP), Paris, France
,
P. Degoulet
1   Université Paris Descartes (Paris 5), Paris, France and laboratoire de recherche en ingénierie des connaissances et e-santé (INSERM UMR_S 872, Eq 20), Paris, France
3   Georges Pompidou University Hospital (HEGP), Paris, France
› Author Affiliations
Further Information

Publication History

received: 20 August 2009

accepted: 27 August 2010

Publication Date:
18 January 2018 (online)

Summary

Objectives: Several alert systems have been developed to improve the patient safety aspects of clinical information systems (CIS). Most studies have focused on the evaluation of these systems, with little information provided about the methodology leading to system implementation. We propose here an ‘agile’ business rule design framework (BRDF) supporting both the design of alerts for the validation of drug prescriptions and the incorporation of the end user into the design process.

Methods: We analyzed the unified process (UP) design life cycle and defined the activities, subactivities, actors and UML artifacts that could be used to enhance the agility of the proposed framework. We then applied the proposed framework to two different sets of data in the context of the Georges Pompidou University Hospital (HEGP) CIS.

Results: We introduced two new subactivities into UP: business rule specification and business rule instantiation activity. The pharmacist made an effective contribution to five of the eight BRDF design activities. Validation of the two new subactivities was effected in the context of drug dosage adaption to the patients’ clinical and biological contexts. Pilot experiment shows that business rules modeled with BRDF and implemented as an alert system triggered an alert for 5824 of the 71,413 prescriptions considered (8.16%).

Conclusion: A business rule design framework approach meets one of the strategic objectives for decision support design by taking into account three important criteria posing a particular challenge to system designers: 1) business processes, 2) knowledge modeling of the context of application, and 3) the agility of the various design steps.

 
  • References

  • 1 Moore N, Lecointre D, Noblet C, Mabille M. Frequency and cost of serious adverse drug reactions in a department of general medicine. Br J Clin Pharmacol 1998; 45 (03) 301-308.
  • 2 Oliven A, Michalake I, Zalman D, Dorman E, Yeshurun D, Odeh M. Prevention of prescription errors by computerized, on-line surveillance of drug order entry. Int J Med Inform 2005; 74 (05) 377-386.
  • 3 Van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in computerized physician order entry. J Am Med Inform Assoc 2006; 13 (02) 138-147.
  • 4 Garg AX, Adhikari NK, McDonald H, Rosas Arellano MP, Devereaux PJ, Beyene J, Sam J, Haynes RB. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 2005; 293 (10) 1223-1238.
  • 5 Bhole M, Sansgiry SS. Computerized physician order entry systems: is the pharmacist’s role justified?. J Am Med Inform Assoc 2004; 11 (02) 125-126.
  • 6 Fair MA, Pane F. Pharmacist interventions in electronic drug orders entered by prescribers. Am J Health Syst Pharm 2004; 61 (12) 1286-1288.
  • 7 Dooley MJ, Allen KM, Doecke CJ, Galbraith KJ, Taylor GR, Bright J, Carey DL. A prospective multi-centre study of pharmacist initiated changes to drug therapy and patient management in acute care government funded hospitals. Br J Clin Pharmacol 2004; 57 (04) 513-521.
  • 8 Leape LL, Cullen DJ, Clapp MD, Burdick E, Demonaco HJ, Erickson JI, Bates DW. Pharmacist participation on physician rounds and adverse drug events in the intensive care unit. JAMA 1999; 282 (03) 267-270.
  • 9 Order of August 9, 1991, implementing Article R 5203 Code of Public Health)
  • 10 Order of March 31, 1999 related to “prescription, to drug dispensation and administration subject to the regulation of poisonous substances in health institutions, To Hospitals labour unions and to socio-medical establishments with a pharmacy for internal use referred to in Article L, 595-1 of the Public Health Code, 1999
  • 11 Estellat C, Colombet I, Vautier S, Huault-Quentel J, Durieux P, Sabatier B. Impact of pharmacy validation in a computerized physician order entry context. Int J Qual Health Care 2007
  • 12 McMullin ST, Reichley RM, Kahn MG, Dunagan WC, Bailey TC. Automated system for identifying potential dosage problems at a large university hospital. Am J Health Syst Pharm 1997; 54 (05) 545-549.
  • 13 Mullett CJ, Evans RS, Christenson JC, Dean JM. Development and impact of a computerized pediatric antiinfective decision support program. Pediatrics 2001; 108 (04) E75.
  • 14 Shekelle PG, Morton SC, Keeler EB. Costs and Benefits of Health Information Technology. Evidence Report/Technology Assessment No. 132. (Prepared by the Southern California Evidence-based Practice Center under Contract No. 290-02-0003.) AHRQ Publication No. 06-E006. Rockville, MD:: Agency for Healthcare Research and Quality. April 2006
  • 15 Seger DL. Computerized POE: changing roles for the clinical pharmacist. J Am Pharm Assoc (Wash) 1999; 39 (05) 710.
  • 16 Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G, Classen DC, Bates DW. Medication-related clinical decision support in computerized provider order entry systems: a review. J Am Med Inform Assoc 2007; 14 (01) 29-40.
  • 17 Greenes RA. Clinical Decision Support: The Road Ahead. 1st ed. Academic Press Inc; 2006
  • 18 Aarts J, Doorewaard H, Berg M. Understanding implementation: the case of a computerized physician order entry system in a large Dutch university medical center. J Am Med Inform Assoc 2004; 11 (03) 207-216.
  • 19 Peleg M, Tu S. Decision support, knowledge representation and management in medicine. Methods Inf Med 2006; 45 (01) 72-80.
  • 20 Boehm B. Get ready for agile methods, with care. Computer 2002; 35 (01) 64-69.
  • 21 Knape T, Hederman L, Wade VP, Gargan M, Harris C, Rahman Y. A UML Approach to process modelling of clinical practice guidelines for enactment. Stud Health Technol Inform 2003; 95: 635-640.
  • 22 LeBozec C, Jaulent MC, Zapletal E, Degoulet P. Unified modeling language and design of a case-based retrieval system in medical imaging. Proc AMIA Symp 1998 pp 887-891.
  • 23 Hahn GJ, Doganaksoy N, Hoerl R. THE – EVOLUTION – OF – SIX – SIGMA – PB – Taylor & Francis. Quality Engineering 2000; (3: 317.
  • 24 Davenport T. Why Six Sigma Is on the Downslope – Harvard Business Review (Internet). Last accessed Jan 3, 2010. Available from: http://blogs.hbr.org/davenport/2008/01/why_six_sigma_is_on_the_downsl.html
  • 25 Osheroff JA. Clinical Decision Support Implementer’s Workbook (Internet). Last accessed Jan 3, 2010. Available from: http://www.himss.org/content/cdsw/front.pdf
  • 26 Jacobson I, Booch G, Rumbaugh J. (eds). The Unified Software Development Process. Addison-Wesley Professional; 1999
  • 27 Vliet HV. Software Engineering: Principles and Practice. 2nd ed. Wiley; 2007
  • 28 Peleg M, Tu S, Bury J. et al. Comparing computer-interpretable guideline models: a case-study approach. J Am Med Inform Assoc 2003; 10 (01) 52-68.
  • 29 Sordo M, Boxwala AA, Ogunyemi O, Greenes RA. Description and status update on GELLO: a proposed standardized object-oriented expression language for clinical decision support. Medinfo 2004; 11 Pt (01) 164-168.
  • 30 Shahar Y, Miksch S, Johnson P. The Asgaard project: a task-specific framework for the application and critiquing of time-oriented guidelines. Artif Intell Med 1998; 14 1, 2 29-52.
  • 31 Musen M, Tu S, Das A, Shahar Y. EON: A component-based approach to automation of protocol-directed therapy. J Am Med Inform Assoc 1996; 3: 367-388.
  • 32 Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE, Pattison-Gordon E, Greenes RA, Shortliffe EH, Barnett GO. The guideline interchange format: a model for representing guidelines. J Am Med Inform Assoc 1998; 5: 357-372.
  • 33 Fox J, Johns N, Rahmanzadeh A. Disseminating medical knowledge: the PROforma approach. Artif Intell Med 1998; 14 1, 2 157-182.
  • 34 Capurro D, Kalet IJ. Representation of a simple and unambiguous clinical guideline in a computer interpretable language. AMIA 2009 Symposium Proceedings
  • 35 “Anonymous” Semantics of Business Vocabulary and Business Rules Specification.. Document de specification de l’OMG, 2006. http://www.omg.org/docs/for/mal/08-01.02.pdf Last accessed 2008/05/02
  • 36 Lindblad CI, Hanlon JT, Gross CR, Sloane RJ, Pieper CF, Hajjar ER, Ruby CM, Schmader KE. Clinically important drug-disease interactions and their prevalence in older adults. Clin Ther 2006; 28 (08) 1133-1143.
  • 37 Degoulet P, Marin L, Lavril M, Le Bozec C, Delbecke E, Meaux JJ, Rose L. The HEGP component based clinical information system. Int J Med Inform 2003; 69 2–3 115-126.
  • 38 THERIAQUE data bank web portal (Internet).. Last accessed May 15, 2010. Available from: http://www.theriaque.org
  • 39 Séné B, Venot A, de Zegher I, Milstein C, Errore S, de Rosis F, Strauch G. A general model of drug prescription. Methods Inf Med 1995; 34 (04) 310-317.
  • 40 Gamma E, Johnson R, Helm R. Vissides J. Design patterns: Elements of reusable object-oriented software. Addison-Wesley Professional; 1995
  • 41 IBM developerWorks: WebSphere ILOG Business Rule Management Systems (Internet).. Nov 16, 2009. Last accessed 2010 Jan 3, 2010. Available from: http://www.ibm.com/developerworks/websphere/zones/brms/
  • 42 Ambler S. How to record the transactional logic behind UML object models. http://www.ddj.com/dept/architect/184414624?cid=Ambysoft Last accessed 2008/05/15
  • 43 Nijpels R. Business Rules in Requirements Analysis. Business Rules Journal 2005 6 (12). http://www.BRCommunity.com/a2005/b259.html Access with login, last accessed 2008/05/15
  • 44 HL7 Reference Information Model. http://www.hl7.org/Library/data-model/RIM/modelpage_/mem.htm
  • 45 Information Model Based on HL7 RIM for the Radiology Department in Japan.. Japanese Association of Healthcare Information Systems Industry. Technical Report 2001-15. http://www.jahis.jp/en/MODELING/modeling/right.htm
  • 46 “Anonymous” Business Semantics of Business Rules, Business Rules Team Response to RFP: SBVR Submission bei/2005-08-01 Version 8. http://www.omg.org/docs/bei/05-08-01.pdf last accessed on 2008/05/02
  • 47 Kuperman GJ, Reichley RM, Bailey TC. Using commercial knowledge bases for clinical decision support: opportunities, hurdles, and recommendations. J Am Med Inform Assoc 2006; 13 (04) 369-371.
  • 48 Ash JS, Gorman PN, Seshadri V, Hersh WR. Computerized physician order entry in U. S. hospitals: results of a 2002 survey. J Am Med Inform Assoc 2004; 11 (02) 95-99. Epub Nov 21, 2003.
  • 49 Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national action on clinical decision support. J Am Med Inform Assoc 2007; 14 (02) 141-145. Epub Jan 9, 2007.
  • 50 Abookire SA, Teich JM, Sandige H, Paterno MD, Martin MT, Kuperman GJ, Bates DW. Improving allergy alerting in a computerized physician order entry system. Proc AMIA Symp 2000 pp 2-6.
  • 51 Weingart SN, Toth M, Sands DZ, Aronson MD, Davis RB, Phillips RS. Physicians’ decisions to override computerized drug alerts in primary care. Arch Intern Med 2003; 163 (21) 2625-2631.
  • 52 Van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in computerized physician order entry. J Am Med Inform Assoc 2006; 13 (02) 138-147.
  • 53 Hsieh TC, Kuperman GJ, Jaggi T, Hojnowski-Diaz P, Fiskio J, Williams DH, Bates DW, Gandhi TK. Characteristics and consequences of drug allergy alert overrides in a computerized physician order entry system. J Am Med Inform Assoc 2004; 11 (06) 482-491. Epub Aug 6, 2004.
  • 54 Greenes RA. Why Clinical Decision Support is Hard to Do. AMIA Annu Symp Proc 2006 pp 1169-1170.
  • 55 Oppenheim MI, Mintz RJ, Boyer AG, Frayer WW. Design of a clinical alert system to facilitate development, testing, maintenance, and user-specific notification. Proc AMIA Symp 2000 pp 630-634.
  • 56 Kuperman GJ, Fiskio JM, Karson A. A process to maintain the quality of a computerized knowledge base. Proc AMIA Symp 1999 pp 87-91.
  • 57 The Standish Group.. The Chaos Report (Internet). 1995 Last accessed Dec 3, 2009. Available from: http://www.projectsmart.co.uk/docs/chaos-report.pdf
  • 58 Fowler M. The Agile Manifesto (Internet]). 2001 Last accessed Jan 3, 2010. Available from: http://andrey.hristov.com/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf
  • 59 Williams L, Cockburn A. Agile software development: it’s about feedback and change. Computer 2003; 36 (06) 43 39.
  • 60 Moxey A. et al. Computerized clinical decision support for prescribing: provision does not guarantee uptake – 17 (1): 25 – Journal of the American Medical Informatics Association (Internet). Llast accessed Jan 13, 2010. Available from: http://jamia.bmj.com/content/17/1/25.abstract
  • 61 Linehan MH. SBVR Use Cases (Internet). In: Proceedings of the International Symposium on Rule Representation, Interchange and Reasoning on the Web. Orlando, Florida: Springer-Verlag; 2008. pp 182-196. Last accessed Jan 3, 2010. Available from: http://portal.acm.org/citation.cfm?id=1483286
  • 62 Goldberg HS, Vashevko M, Pastilnik A, Smith K, Plaks N, Blumenfeld BM. Evaluation of a commercial rule engine as a basis for a clinical decision support service. AMIA Annu Symp Proc 2006 pp 294-298.
  • 63 Kashyap V, Morales A, Hongsermeier T. On implementing clinical decision support: achieving scalability and maintainability by combining business rules and ontologies. AMIA Annu Symp Proc 2006 pp 414-418.
  • 64 Wright A, Sittig DF. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network. J Biomed Inform 2008; 41 (06) 962-981.
  • 65 Zapletal E, Rodon N, Grabar N, Degoulet P. Methodology of integration of a clinical data warehouse with a clinical information system: the HEGP case. Stud Health Technol Inform 2010; 160 Pt (01) 193-197.
  • 66 Qumer A, Henderson-Sellers B. An evaluation of the degree of agility in six agile methods and its applicability for method engineering. Inf Softw Techno 2008; 50 (04) 280-295.