Methods Inf Med 2014; 53(06): 419-427
DOI: 10.3414/ME13-01-0122
Original Articles
Schattauer GmbH

The Evolution of Boosting Algorithms[*]

From Machine Learning to Statistical Modelling
A. Mayr
1   Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
,
H. Binder
2   Institut für Medizinische Biometrie, Epidemiologie und Informatik, Johannes Gutenberg-Universität Mainz, Germany
,
O. Gefeller
1   Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
,
M. Schmid
1   Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
3   Institut für Medizinische Biometrie, Informatik und Epidemiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 11. November 2013

accepted: 02. Mai 2014

Publikationsdatum:
20. Januar 2018 (online)

Preview

Summary

Background: The concept of boosting emerged from the field of machine learning. The basic idea is to boost the accuracy of a weak classifying tool by combining various instances into a more accurate prediction. This general concept was later adapted to the field of statistical modelling. Nowadays, boosting algorithms are often applied to estimate and select predictor effects in statistical regression models.

Objectives: This review article attempts to highlight the evolution of boosting algorithms from machine learning to statistical modelling.

Methods: We describe the AdaBoost algorithm for classification as well as the two most prominent statistical boosting approaches, gradient boosting and likelihood-based boosting for statistical modelling. We highlight the methodological background and present the most common software implementations.

Results: Although gradient boosting and likelihood-based boosting are typically treated separately in the literature, they share the same methodological roots and follow the same fundamental concepts. Compared to the initial machine learning algorithms, which must be seen as black-box prediction schemes, they result in statistical models with a straight-forward interpretation.

Conclusions: Statistical boosting algorithms have gained substantial interest during the last decade and offer a variety of options to address important research questions in modern biomedicine.

* Supplementary material published on our web-site www.methods-online.com