CC BY-NC-ND 4.0 · Asian J Neurosurg 2014; 9(03): 144-152
DOI: 10.4103/1793-5482.142734
ORIGINAL ARTICLE

Neural oscillation, network, eloquent cortex and epileptogenic zone revealed by magnetoencephalography and awake craniotomy

Zamzuri Idris
1   Center for Neuroscience Service and Research
2   Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan
,
Regunath Kandasamy
2   Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan
,
Faruque Reza
2   Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan
,
Jafri Abdullah
1   Center for Neuroscience Service and Research
2   Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan
› Author Affiliations

Background: Magnetoencephalography (MEG) is a method of functional neuroimaging. The concomitant use of MEG and electrocorticography has been found to be useful in elucidating neural oscillation and network, and to localize epileptogenic zone and functional cortex. We describe our early experience using MEG in neurosurgical patients, emphasizing on its impact on patient management as well as the enrichment of our knowledge in neurosciences. Materials and Methods: A total of 10 subjects were included; five patients had intraaxial tumors, one with an extraaxial tumor and brain compression, two with arteriovenous malformations, one with cerebral peduncle hemorrhage and one with sensorimotor cortical dysplasia. All patients underwent evoked and spontaneous MEG recordings. MEG data was processed at band-pass filtering frequency of between 0.1 and 300 Hz with a sampling rate of 1 kHz. MEG source localization was performed using either overdetermined equivalent current dipoles or underdetermined inversed solution. Neuromag collection of events software was used to study brain network and epileptogenic zone. The studied data were analyzed for neural oscillation in three patients; brain network and clinical manifestation in five patients; and for the location of epileptogenic zone and eloquent cortex in two patients. Results: We elucidated neural oscillation in three patients. One demonstrated oscillatory phenomenon on stimulation of the motor-cortex during awake surgery, and two had improvement in neural oscillatory parameters after surgery. Brain networks corresponding to clinico-anatomical relationships were depicted in five patients, and two networks were illustrated here. Finally, we demonstrated epilepsy cases in which MEG data was found to be useful in localizing the epileptogenic zones and functional cortices. Conclusion: The application of MEG while enhancing our knowledge in neurosciences also has a useful role in epilepsy and awake surgery.



Publication History

Article published online:
22 September 2022

© 2014. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India