CC BY-NC-ND 4.0 · Asian J Neurosurg 2021; 16(02): 264-270
DOI: 10.4103/ajns.AJNS_275_20
Original Article

Predictors of outcome following interventions for ruptured intracranial aneurysms in an emerging health institution in West Bengal: A 6-year experience

Enoch Uche
1   Department of Surgery, University of Nigeria Teaching Hospital, Enugu
,
Mesi Matthew
1   Department of Surgery, University of Nigeria Teaching Hospital, Enugu
2   Department of Neurosurgery, Medica Institute of Neurological Diseases, Medica Super Specialty Hospital, Kolkata
,
Sujeet Meher
2   Department of Neurosurgery, Medica Institute of Neurological Diseases, Medica Super Specialty Hospital, Kolkata
,
Laxmi Tripathy
2   Department of Neurosurgery, Medica Institute of Neurological Diseases, Medica Super Specialty Hospital, Kolkata
,
Wilfred Mezue
1   Department of Surgery, University of Nigeria Teaching Hospital, Enugu
,
Harsh Jain
2   Department of Neurosurgery, Medica Institute of Neurological Diseases, Medica Super Specialty Hospital, Kolkata
,
Sunandan Basu
2   Department of Neurosurgery, Medica Institute of Neurological Diseases, Medica Super Specialty Hospital, Kolkata
,
Mark Chikani
1   Department of Surgery, University of Nigeria Teaching Hospital, Enugu
,
Ephraim Onyia
1   Department of Surgery, University of Nigeria Teaching Hospital, Enugu
,
Izuchukwu Iloabachie
1   Department of Surgery, University of Nigeria Teaching Hospital, Enugu
› Author Affiliations

Background: Microsurgical clipping and endovascular coiling have remained over the past half-century, the main options for definitive treatment of ruptured intracranial aneurysms. However, recent advances in endovascular techniques have broadened their application stimulating much debate regarding the usefulness of microsurgical options. For locations with limited capacity or evolving endovascular service, however, microsurgical treatment offers not only cost-effective and durable options but also oftentimes the only option available for most patients. Materials and Methods: This was a single institution questionnaire-based retrospective study from West Bengal India. It was performed on patients with aneurysmal rupture managed from June 2010 to October 2016. Data analysis was performed with SPSS for Windows, version 21. Results: One hundred and ten patients were studied. The mean age was 50.8 years (standard deviation [SD] ±13.5) for females and 50.2 (SD ± 12.4) for males (P = 0.8112, t-test). Ninety (81.8%) patients received microsurgical clipping. Microsurgical options such as wrapping, bypass, and excision were performed for 9 (8.2%) patients. Coiling was performed for 11 (10%) patients. ACOM was the most common site for ruptured aneurysm. Ictus-intervention interval (χ2 = 10.034, P = 0.007) and multiple surgical procedures (χ2 = 8.9341, P = 0.003) were the significant outcome determinants. Overall, 72.7% of those treated had a good outcome (Glasgow Outcome Score of 4 and 5). The good outcome was higher among microsurgery groups (73.7%) compared to the coiling group (63.6%) but this difference did not achieve statistical significance (χ2 = 0.46 P = 0.4976). Conclusion: Microsurgical options achieved good outcomes in the management of ruptured aneurysms in our series. Their availability makes them first-line options for low-income settings.

Financial support and sponsorship

Nil.




Publication History

Received: 06 June 2020

Accepted: 08 February 2021

Article published online:
16 August 2022

© 2021. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Peschillo S, Caporlingua A, Caporlingua F, Guglielmi G, Delfini R. Historical landmarks in the management of aneurysms and arteriovenous malformations of the central nervous system. World Neurosurg 2016;88:661-71.
  • 2 Linn FH, Rinkel GJ, Algra A, van Gijn J. Incidence of subarachnoid hemorrhage: Role of region, year, and rate of computed tomography: A meta-analysis. Stroke 1996;27:625-9.
  • 3 Howard BM, Barrow DL. Outcomes for patients with poor-grade subarachnoid hemorrhage: To treat or not to treat? World Neurosurg 2016;86:30-2.
  • 4 Spetzler RF, McDougall CG, Zabramski JM, Albuquerque FC, Hills NK, Russin JJ, et al. The barrow ruptured aneurysm trial: 6-year results. J Neurosurg 2015;123:609-17.
  • 5 Andrade-Barazarte H, Luostarinen T, Goehre F, Kivelev J, Jahromi BR, Ludtka C, et al. Transient cardiac arrest induced by adenosine: A tool for contralateral clipping of internal carotid artery-ophthalmic segment aneurysms. World Neurosurg 2015;84:1933-40.
  • 6 Figueiredo EG, Foroni L, Monaco BA, Gomes MQ, Sterman Neto H, Teixeira MJ. The clip-wrap technique in the treatment of intracranial unclippable aneurysms. Arq Neuropsiquiatr 2010;68:115-8.
  • 7 Fraser JF, Stieg PE. Surgical bypass for intracranial aneurysms: Navigating around a changing paradigm. World Neurosurg 2011;75:414-7.
  • 8 Griessenauer CJ, Poston TL, Shoja MM, Mortazavi MM, Falola M, Tubbs RS, et al. The impact of temporary artery occlusion during intracranial aneurysm surgery on long-term clinical outcome: Part I. Patients with subarachnoid hemorrhage. World Neurosurg 2014;82:140-8.
  • 9 Froelich JJ, Neilson S, Peters-Wilke J, Dubey A, Thani N, Erasmus A, et al. Size and location of ruptured intracranial aneurysms: A 5-year clinical survey. World Neurosurg 2016;91:260-5.
  • 10 Sharma P, Mehrotra A, Das KK, Bhaisora KS, Sardhara J, Godbole CA, et al. Factors predicting poor outcome in a surgically managed series of multiple intracranial aneurysms. World Neurosurg 2016;90:29-37.
  • 11 Nabaweesi-Batuka J, Kitunguu PK, Kiboi JG. Pattern of cerebral aneurysms in a Kenyan population as seen at an Urban hospital. World Neurosurg 2016;87:255-65.
  • 12 Beck J, Rohde S, Berkefeld J, Seifert V, Raabe A. Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg Neurol 2006;65:18-25.
  • 13 Ogeng'o JA, Otieno BO, Kilonzi J, Sinkeet SR, Muthoka JM. Intracranial aneurysms in an African country. Neurol India 2009;57:613-6.
  • 14 Lu HT, Tan HQ, Gu BX, Wu-Wang , Li MH. Risk factors for multiple intracranial aneurysms rupture: A retrospective study. Clin Neurol Neurosurg 2013;115:690-4.
  • 15 Nehls DG, Flom RA, Carter LP, Spetzler RF. Multiple intracranial aneurysms: Determining the site of rupture. J Neurosurg 1985;63:342-8.
  • 16 Ambekar S, Madhugiri V, Pandey P, Yavagal DR. Cerebral aneurysm treatment in India: Results of a national survey regarding practice patterns in India. Neurol India 2016;64 Suppl: S62-9.
  • 17 Amine C, Najia EA, Hatim I, Adil A, Yahya C, Abdeljalil EQ. The cost of management of intracranial aneurysms by embolization in morocco: About 48 cases. Int J Pharm Pharm Sci 2014;6 Suppl 2:822-6.
  • 18 Deb K, Ghosh J, Jain H, Tripathy LN. Adenosine in difficult aneurysm surgeries: Report of two cases. J Neuroanaesth Crit Care 2014;1:66-8.
  • 19 Safavi-Abbasi S, Moron F, Sun H, Wilson C, Frock B, Oppenlander ME, et al. Techniques and outcomes of gore-tex clip-wrapping of ruptured and unruptured cerebral aneurysms. World Neurosurg 2016;90:281-90.
  • 20 Tian Y, Zhu W, Mao Y. Surgical strategies for treatment of complex anterior cerebral artery aneurysms. World Neurosurg 2014;81:304-5.
  • 21 Gupta MM, Bithal PK, Dash HH, Chaturvedi A, Prabhakar H. Clinical outcome of intracranial aneurysms: A retrospective comparison between endovascular coiling and neurosurgical clipping. Indian J Anaesth 2008;52:63.
  • 22 Zanaty M, Chalouhi N, Starke RM, Daou B, Todd M, Bayman E, et al. Short-term outcome of clipping versus coiling of ruptured intracranial aneurysms treated by dual-trained cerebrovascular surgeon: Single-institution experience. World Neurosurg 2016;95:262-9.