RSS-Feed abonnieren
DOI: 10.5482/ha-1162
The evolving plasticity of coagulation protease-dependent cytoprotective signalling
Neue Erkenntnisse über die Plastizität der Gerinnungsproteasen-vermittelten ZytoprotektionPublikationsverlauf
received:
18. Mai 2011
accepted in revised form:
01. Juni 2011
Publikationsdatum:
28. Dezember 2017 (online)
Summary
Coagulation proteases control cellular homeostasis beyond haemostasis. While the role of coagulation proteases in regulating vascular healing and thrombosis is well established, the mechanism underlying the receptor-dependent regulation of cellular function remain incompletely understood. In particular, the opposing effects of the protease-activated receptor 1 (PAR-1), dependent on the activating proteases thrombin or activated protein C generated a conundrum researchers only recently have begun to decipher. The net-effect (cellular perturbation vs. cellular protection) depends on co-receptors involved, the concentration of the activating protease, the temporal context of receptor activation, and a dynamic process of receptor rearrangement upon receptor activation. The latter scenario recruits receptors to a cytoprotective signalling pathways. Recent insights into these mechanisms are summarized in this article.
Zusammenfassung
Unabhängig von der Regulation der Hämostase kontrollieren Gerinnungsproteasen die zelluläre Homöostase. Die Mechanismen, durch die Gerinnungsproteasen vaskuläre Heilungsprozesse oder Thrombose (Hämostase) regulieren, sind gut untersucht und weitgehend verstanden. Hingegen sind die Rezeptor-vermittelten Mechanismen, durch die diese Proteasen die zelluläre Homöostase kontrollieren, bisher nur unvollständig bekannt. So vermittelt der Protease-aktivierbare Rezeptor 1 (PAR-1) in Abhängigkeit der aktivierenden Protease (Thrombin oder aktiviertes Protein C) entgegengesetzte Effekte. Neue Erkenntnisse geben erstmals Einblicke in die Mechanismen, die diesen scheinbar widersprüchlichen Befunden zu Grunde liegen. Die erzielte Wirkung (Zellprotektion versus Zellaktivierung) hängt von Ko-Rezeptoren, der Konzentration der aktivierenden Protease, dem zeitlichen Kontext der Aktivierung und dynamischen Umstrukturierungen der involvierten Rezeptorkomplexe ab. Insbesondere die Restrukturierung der Rezeptoren ist mit einer Aktivierung zytoprotektiver Signalwege assoziiert. Neue Studienergebnisse, die diesen Erkenntnissen zu Grunde liegen, werden in diesem Artikel besprochen.
-
References
- 1 Adams MN, Ramachandran R, Yau MK. et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130: 248-282.
- 2 Riewald M, Petrovan RJ, Donner A. et al. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002; 296: 1880-1882.
- 3 Ludeman MJ, Kataoka H, Srinivasan Y. et al. PAR1 cleavage and signaling in response to activated protein C and thrombin. J Biol Chem 2005; 280: 13122-13128.
- 4 Balazs AB, Fabian AJ, Esmon CT, Mulligan RC. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 2006; 107: 2317-2321.
- 5 Bretschneider E, Uzonyi B, Weber AA. et al. Human vascular smooth muscle cells express functionally active endothelial cell protein C receptor. Circ Res 2007; 100: 255-262.
- 6 Gorbacheva L, Pinelis V, Ishiwata S. et al. Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience 2010; 165: 1138-1146.
- 7 Xue M, Campbell D, Jackson CJ. Protein C is an autocrine growth factor for human skin keratinocytes. J Biol Chem 2007; 282: 13610-13616.
- 8 Xue M, March L, Sambrook PN. et al. Endothelial protein C receptor is overexpressed in rheumatoid arthritic (RA) synovium and mediates the anti-inflammatory effects of activated protein C in RA monocytes. Ann Rheum Dis 2007; 66: 1574-1580.
- 9 Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood 2007; 109: 3161-3172.
- 10 Riewald M, Petrovan RJ, Donner A, Ruf W. Activated protein C signals through the thrombin receptor PAR1 in endothelial cells. J Endotoxin Res 2003; 09: 317-321.
- 11 Finigan JH, Dudek SM, Singleton PA. et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 2005; 280: 17286-17293.
- 12 Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 2005; 105: 3178-3184.
- 13 O’Brien LA, Richardson MA, Mehrbod SF. et al. Activated protein C decreases tumor necrosis factor related apoptosis-inducing ligand by an EPCR-in dependent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler Thromb Vasc Biol 2007; 27: 2634-2641.
- 14 Isermann B, Vinnikov IA, Madhusudhan T. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 2007; 13: 1349-1358.
- 15 Chae SS, Proia RL, Hla T. Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins Other Lipid Mediat 2004; 73: 141-150.
- 16 White TC, Berny MA, Tucker EI. et al. Protein C supports platelet binding and activation under flow: role of glycoprotein Ib and apolipoprotein E receptor 2. J Thromb Haemost 2008; 06: 995-1002.
- 17 Yang XV, Banerjee Y, Fernandez JA. et al. Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc Natl Acad Sci USA 2009; 106: 274-279.
- 18 Bae JS, Rezaie AR. Thrombin inhibits nuclear factor kappaB and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb Haemost 2009; 101: 513-520.
- 19 Bae JS, Kim YU, Park MK, Rezaie AR. Concentration dependent dual effect of thrombin in endothelial cells via Par-1 and Pi3 Kinase. J Cell Physiol 2009; 219: 744-751.
- 20 Majerus PW. Human genetics. Bad blood by mutation. Nature 1994; 369: 14-15.
- 21 Gopel W, Gortner L, Kohlmann T. et al. Low prevalence of large intraventricular haemorrhage in very low birthweight infants carrying the factor V Leiden or prothrombin G20210A mutation. Acta Paediatr 2001; 90: 1021-1024.
- 22 Kerlin BA, Yan SB, Isermann BH. et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 2003; 102: 3085-3092.
- 23 Lindqvist PG, Svensson PJ, Dahlback B, Marsal K. Factor V Q506 mutation (activated protein C resistance) associated with reduced intrapartum blood loss--a possible evolutionary selection mechanism. Thromb Haemost 1998; 79: 69-73.
- 24 Adamzik M, Frey UH, Riemann K. et al. Factor V Leiden mutation is associated with improved 30-day survival in patients with acute respiratory distress syndrome. Crit Care Med 2008; 36: 1776-1779.
- 25 Benfield T, Ejrnaes K, Juul K. et al. Influence of Factor V Leiden on susceptibility to and outcome from critical illness: a genetic association study. Crit Care 2010; 14: R28.
- 26 Bruggemann LW, Schoenmakers SH, Groot AP. et al. Role of the factor V Leiden mutation in septic peritonitis assessed in factor V Leiden transgenic mice. Crit Care Med 2006; 34: 2201-2206.
- 27 Yan SB, Nelson DR. Effect of factor V Leiden polymorphism in severe sepsis and on treatment with recombinant human activated protein C. Crit Care Med 2004; 32: S239-S246.
- 28 Faust SN, Levin M, Harrison OB. et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 2001; 345: 408-416.
- 29 Liaw PC. Endogenous protein C activation in patients with severe sepsis. Crit Care Med 2004; 32: S214-S218.
- 30 Wang H, Madhusudhan T, He T. et al. Low but sustained coagulation activation ameliorates glucose induced podocyte apoptosis: protective effect of factor V Leiden in diabetic nephropathy. Blood 2011; 117: 5231-5242.
- 31 Ardissino D, Merlini PA, Bauer KA. et al. Coagulation activation and long-term outcome in acute coronary syndromes. Blood 2003; 102: 2731-2735.
- 32 Seehaus S, Shahzad K, Kashif M. et al. Hypercoagulability inhibits monocyte transendothelial migration through protease-activated receptor-1-, phospholipase-Cbeta-, phosphoinositide 3-kinase-, and nitric oxide-dependent signaling in monocytes and promotes plaque stability. Circulation 2009; 120: 774-784.
- 33 Kaneider NC, Leger AJ, Agarwal A. et al. ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol 2007; 08: 1303-1312.
- 34 Bae JS, Yang L, Rezaie AR. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci USA 2007; 104: 2867-2872.
- 35 Bae JS, Yang L, Rezaie AR. Lipid raft localization regulates the cleavage specificity of protease activated receptor 1 in endothelial cells. J Thromb Haemost 2008; 06: 954-961.
- 36 Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 2010; 09: 373-386.
- 37 Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost 2008; 100: 101-109.
- 38 Schuepbach RA, Riewald M. Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost 2010; 08: 379-388.
- 39 Bae JS, Yang L, Rezaie AR. Factor X/Xa elicits protective signaling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1. J Biol Chem 2010; 285: 34803-34812.
- 40 Feistritzer C, Lenta R, Riewald M. Protease-activated receptors-1 and -2 can mediate endothelial barrier protection: role in factor Xa signaling. J Thromb Haemost 2005; 03: 2798-2805.