Radiologie up2date 2018; 18(02): 155-168
DOI: 10.1055/a-0578-5309
Pulmonale und kardiovaskuläre Radiologie
Georg Thieme Verlag KG Stuttgart · New York

Periphere MR-Angiografie

Peripheral MRA
Harald Kramer
,
Karl-Friedrich Kreitner
Further Information

Publication History

Publication Date:
29 June 2018 (online)

Zusammenfassung

In der Diagnostik der peripheren AVK gilt die digitale Subtraktionsangiografie (DSA) immer noch als Referenzstandard. Alternativ stehen Sonografie, CTA und MRA zur Verfügung. Die im Folgenden vorgestellte MRA bietet ein breites Portfolio an verschiedenen Techniken und kommt damit für verschiedene Anwendungsmöglichkeiten infrage.

Kernaussagen
  • Seit der Einführung der kontrastmittelverstärkten MRA entwickelten sich viele verschiedene Techniken, von denen einige bis heute verwendet werden. Alle bieten eine diagnostische Bildqualität, manche haben allerdings Nachteile wie eine lange Akquisitionszeit, die zu venösen Überlagerungen führen kann, oder eine eingeschränkte räumliche Auflösung.

  • Die Einführung spezieller Datenakquisitionstechniken sowie optimierter Kontrastmittel sind ein großer Fortschritt für die MRA.

  • Andere Verfahren wie die CTA oder der Doppler-Ultraschall sind in speziellen Gefäßregionen oder bei speziellen Fragen überlegen, die MRA bietet jedoch durch ihr breites Portfolio an verschiedenen Techniken die breiteste Anwendungsmöglichkeit.

  • Eine MRA-Untersuchung kann sowohl an die klinische Fragestellung als auch an den Zustand des Patienten perfekt angepasst werden.

 
  • Literatur

  • 1 Heron M. Deaths: Leading Causes for 2014. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 2016; 65: 1-96
  • 2 Norgren L, Hiatt WR, Dormandy JA. et al. TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg 2007; 45 (Suppl S) S5-S67
  • 3 Dormandy J, Heeck L, Vig S. Acute limb ischemia. Semin Vasc Surg 1999; 12: 148-153
  • 4 Diehm C, Kareem S, Lawall H. Epidemiology of peripheral arterial disease. Vasa 2004; 33: 183-189
  • 5 Kanda T, Nakai Y, Oba H. et al. Gadolinium deposition in the brain. Magn Reson Imaging 2016; 34: 1346-1350
  • 6 Radbruch A. Are some agents less likely to deposit gadolinium in the brain?. Magn Reson Imaging 2016; 34: 1351-1354
  • 7 Ramalho J, Ramalho M. Gadolinium Deposition and Chronic Toxicity. Magn Reson Imaging Clin N Am 2017; 25: 765-778
  • 8 Robert P, Lehericy S, Grand S. et al. T1-Weighted Hypersignal in the Deep Cerebellar Nuclei After Repeated Administrations of Gadolinium-Based Contrast Agents in Healthy Rats: Difference Between Linear and Macrocyclic Agents. Invest Radiol 2015; 50: 473-480
  • 9 Cowper SE. Nephrogenic systemic fibrosis: a review and exploration of the role of gadolinium. Adv Dermatol 2007; 23: 131-154
  • 10 Thomsen HS. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur Radiol 2006; 16: 2619-2621
  • 11 Green D, Parker D. CTA and MRA: visualization without catheterization. Semin Ultrasound CT MR 2003; 24: 185-191
  • 12 Pintaske J, Martirosian P, Graf H. et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006; 41: 213-221
  • 13 Rohrer M. MRI Contrast Media – Introduction and basic Properties of the Blood Pool Agent Vasovist. In: Leiner TG, Rohrer M, Schienberg SO. eds. Clinical Blood Pool MR Imaging. Berlin: Springer; 2008: 3-15
  • 14 Rohrer M, Bauer H, Mintorovitch J. et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005; 40: 715-724
  • 15 Goyen M, Herborn CU, Vogt FM. et al. Using a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional MR angiography: preliminary experience. J Magn Reson Imaging 2003; 17: 565-571
  • 16 Goyen M, Lauenstein TC, Herborn CU. et al. 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging 2001; 14: 602-607
  • 17 Gregor M, Tombach B, Hentsch A. et al. Peripheral run-off CE-MRA with a 1.0 molar gadolinium chelate (Gadovist) with intraarterial DSA comparison. Acad Radiol 2002; 9 (Suppl. 02) S398-S400
  • 18 Kramer H, Michaely HJ, Requardt M. et al. Effects of injection rate and dose on image quality in time-resolved magnetic resonance angiography (MRA) by using 1.0M contrast agents. Eur Radiol 2007; 17: 1394-1402
  • 19 Marchal G, Michiels J, Bosmans H. et al. Contrast-enhanced MRA of the brain. J Comput Assist Tomogr 1992; 16: 25-29
  • 20 Bongartz GM, Boos M, Winter K. et al. Clinical utility of contrast-enhanced MR angiography. Eur Radiol 1997; 7 (Suppl. 05) 178-186
  • 21 Westenberg JJ, Wasser MN, van der Geest RJ. et al. Scan optimization of gadolinium contrast-enhanced three-dimensional MRA of peripheral arteries with multiple bolus injections and in vitro validation of stenosis quantification. Magn Reson Imaging 1999; 17: 47-57
  • 22 Czum JM, Ho VB, Hood MN. et al. Bolus-chase peripheral 3D MRA using a dual-rate contrast media injection. J Magn Reson Imaging 2000; 12: 769-775
  • 23 Hood MN, Ho VB, Foo TK. et al. High-resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries. Lessons for improving bolus-chase peripheral MRA. Magn Reson Imaging 2002; 20: 543-549
  • 24 Kramer H, Michaely HJ, Matschl V. et al. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla. Invest Radiol 2007; 42: 477-483
  • 25 Kramer H, Michaely HJ, Reiser MF. et al. Peripheral magnetic resonance angiography at 3.0 T. Top Magn Reson Imaging 2007; 18: 135-138
  • 26 Kramer H, Nikolaou K, Sommer W. et al. Peripheral MR angiography. Magn Reson Imaging Clin N Am 2009; 17: 91-100
  • 27 Blaimer M, Breuer FA, Mueller M. et al. 2D-GRAPPA-operator for faster 3D parallel MRI. Magn Reson Med 2006; 56: 1359-1364
  • 28 Berg F, Bangard C, Bovenschulte H. et al. Feasibility of peripheral contrast-enhanced magnetic resonance angiography at 3.0 Tesla with a hybrid technique: comparison with digital subtraction angiography. Invest Radiol 2008; 43: 642-649
  • 29 Hany TF, Pfammatter T, Debatin JF. [Clinical use of contrast-enhanced MR angiography]. Schweiz Med Wochenschr 1998; 128: 544-551
  • 30 Meissner OA, Rieger J, Weber C. et al. Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology 2005; 235: 308-318
  • 31 Carroll TJ, Korosec FR, Swan JS. et al. The effect of injection rate on time-resolved contrast-enhanced peripheral MRA. J Magn Reson Imaging 2001; 14: 401-410
  • 32 Lohan DG, Tomasian A, Saleh RS. et al. Ultra-low-dose, time-resolved contrast-enhanced magnetic resonance angiography of the carotid arteries at 3.0 tesla. Invest Radiol 2009; 44: 207-217
  • 33 Kramer JH, Arnoldi E, François CJ. et al. Dynamic and static magnetic resonance angiography of the supra-aortic vessels at 3.0 T: intraindividual comparison of gadobutrol, gadobenate dimeglumine, and gadoterate meglumine at equimolar dose. Invest Radiol 2013; 48: 121-128
  • 34 Neufang A, Dorweiler B, Espinola-Klein C. et al. [Limb salvage in diabetic foot syndrome with pedal bypass using the in-situ technique]. Zentralbl Chir 2003; 128: 715-719
  • 35 Kreitner KF, Schmitt R. MultiHance-enhanced MR angiography of the peripheral run-off vessels in patients with diabetes. Eur Radiol 2007; 17 (Suppl. 06) F63-F68
  • 36 Malyar NM, Freisinger E, Meyborg M. et al. Amputations and mortality in in-hospital treated patients with peripheral artery disease and diabetic foot syndrome. J Diabetes Complications 2016; 30: 1117-1122
  • 37 Yucel EK, Kaufman JA, Geller SC. et al. Atherosclerotic occlusive disease of the lower extremity: prospective evaluation with two-dimensional time-of-flight MR angiography. Radiology 1993; 187: 637-641
  • 38 Davis WL, Warnock SH, Harnsberger HR. et al. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition. J Comput Assist Tomogr 1993; 17: 15-21
  • 39 Cronqvist M, Ståhlberg F, Larsson EM et al. Evaluation of time-of-flight and phase-contrast MRA sequences at 1.0 T for diagnosis of carotid artery disease. I. A phantom and volunteer study. Acta Radiol 1996; 37 (3 Pt 1): 267-277
  • 40 Miyazaki M, Akahane M. Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 2012; 35: 1-19
  • 41 Miyazaki M, Isoda H. Non-contrast-enhanced MR angiography of the abdomen. Eur J Radiol 2011; 80: 9-23
  • 42 Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology 2008; 248: 20-43
  • 43 Kramer H, Runge VM, Morelli JN. et al. Magnetic resonance angiography of the carotid arteries: comparison of unenhanced and contrast enhanced techniques. Eur Radiol 2011; 21: 1667-1676
  • 44 Edelman RR, Sheehan JJ, Dunkle E. et al. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn Reson Med 2010; 63: 951-988