Neben der herausragenden Stellung im Bereich der Tumororthopädie erlangen Megaprothesen zunehmend Bedeutung für die Revisionsendoprothetik. Trotz der breiten Anwendung bleiben die berichteten Komplikations- und Versagensraten jedoch hoch. Die Analyse der Versagensursachen lässt grob eine Unterteilung in mechanische und nicht mechanische Versagensursachen zu, unter diesen nimmt einerseits das Weichteilversagen (Funktionsverlust) und die Lockerung, andererseits der Infekt eine herausragende Bedeutung ein. Dabei kann jedem Versagenstyp ein spezifisches Prothesenbauteil zugeordnet werden. Die technisch korrekt durchgeführte Operation vorausgesetzt, ist für das Weichteilversagen die muskuläre Anbindung an die Prothese, für die Lockerung die Verankerungstechnik über den Stem und für den Infekt die Oberflächenbeschaffenheit bzw. ggf. die Beschichtung der Prothese entscheidend. Bis heute haben sich einige vollwertige Systeme für den Ersatz des proximalen Femurs auf dem Markt etabliert, deren klinische Resultate in etwa vergleichbar sind. Im Detail sind deutliche Unterschiede hinsichtlich Verankerungstechniken, Modularität bzw. Modulverbindungen und Weichteilanbindung erkennbar, die spezifische Vor- und Nachteile mit sich bringen. In jedem Fall belegen die hohen Versagensraten ein großes Potenzial für zukünftige Entwicklungen. Innovative Verbesserungsvorschläge für jedes Bauteil sind durch Quervernetzungen zu bereits funktionierenden Systemen gut möglich. Zusammen mit neuen Erkenntnissen der Grundlagenforschung sollte es bei zukünftigen Systemen möglich sein, den Anteil der Prothesenversager deutlich zu reduzieren.
Abstract
In addition to their outstanding significance in the field of tumor orthopaedics, megaprostheses are becoming increasingly important for revision arthroplasty. Despite their wide application, the reported complication and failure rates remain high. The analysis of failure mechanisms roughly allows a breakdown into mechanical and non-mechanical causes; soft-tissue failure, loosening and periprosthetic infection play outstanding roles. Each type of failure can be associated to a specific prosthetic component: To avoid soft tissue failure, muscular connection to the prosthesis is essential; to avoid loosening, the anchoring technique on the stem is crucial; to prevent infection, the surface condition or possibly the coating of the prosthesis seem to play major roles. Some fully-fledged proximal femoral replacement systems have become established on the market and have similar clinical outcomes. However, there are significant differences in anchoring techniques, modularity or module connections and soft tissue connection. In any case, the high failure rates show that there is great potential for future developments. Innovative suggestions for each component are certainly possible through cross-linking to already functioning systems. Together with new findings from basic research, future systems should be able to significantly reduce the rate of prosthetic failures.
1
Palumbo BT,
Henderson ER,
Groundland JS.
et al.
Advances in segmental endoprosthetic reconstruction for extremity tumors: a review of contemporary designs and techniques. Cancer Control 2011; 18: 160-170
3
Crowninshield RD,
Maloney WJ,
Wentz DH.
et al.
The role of proximal femoral support in stress development within hip prostheses. Clin Orthop Relat Res 2004; (420) 176-180
5
Van Houwelingen AP,
Duncan CP,
Masri BA.
et al.
High survival of modular tapered stems for proximal femoral bone defects at 5 to 10 years followup. Clin Orthop Relat Res 2013; 471: 454-462
10
Toepfer A,
Harrasser N,
Petzschner I.
et al.
Is total femoral replacement for non-oncologic and oncologic indications a safe procedure in limb preservation surgery? A single center experience of 22 cases. Eur J Med Res 2018; 23: 5
11
Henderson ER,
Groundland JS,
Pala E.
et al.
Failure mode classification for tumor endoprostheses: retrospective review of five institutions and a literature review. J Bone Joint Surg Am 2011; 93: 418-429
12
Henderson ER,
OʼConnor MI,
Ruggieri P.
et al.
Classification of failure of limb salvage after reconstructive surgery for bone tumours: a modified system Including biological and expandable reconstructions. Bone Joint J 2014; 96-B: 1436-1440
13
Capanna R,
Scoccianti G,
Frenos F.
et al.
What was the survival of megaprostheses in lower limb reconstructions after tumor resections?. Clin Orthop Relat Res 2015; 473: 820-830
14
Unwin PS,
Cannon SR,
Grimer RJ.
et al.
Aseptic loosening in cemented custom-made prosthetic replacements for bone tumours of the lower limb. J Bone Joint Surg Br 1996; 78: 5-13
18
Kinkel S,
Nadorf J,
Graage JD.
et al.
Primary rotational stability of various megaprostheses in a biomechanical sawbone model with proximal femoral defects extending to the isthmus. PLoS One 2015; 10: e0129149
19
Kinkel S,
Graage JD,
Kretzer JP.
et al.
Influence of stem design on the primary stability of megaprostheses of the proximal femur. Int Orthop 2013; 37: 1877-1883
21
Kagan R,
Adams J,
Schulman C.
et al.
What factors are associated with failure of compressive osseointegration fixation?. Clin Orthop Relat Res 2017; 475: 698-704
22
Farfalli GL,
Boland PJ,
Morris CD.
et al.
Early equivalence of uncemented press-fit and Compress femoral fixation. Clin Orthop Relat Res 2009; 467: 2792-2799
23
Chao EY,
Fuchs B,
Rowland CM.
et al.
Long-term results of segmental prosthesis fixation by extracortical bone-bridging and ingrowth. J Bone Joint Surg Am 2004; 86-A: 948-955
24
Myers GJ,
Abudu AT,
Carter SR.
et al.
The long-term results of endoprosthetic replacement of the proximal tibia for bone tumours. J Bone Joint Surg Br 2007; 89: 1632-1637
25
Hoberg M,
Konrads C,
Engelien J.
et al.
Outcome of a modular tapered uncemented titanium femoral stem in revision hip arthroplasty. Int Orthop 2015; 39: 1709-1713
27
Plötz W,
Rechl H,
Burgkart R.
et al.
Limb salvage with tumor endoprostheses for malignant tumors of the knee. Clin Orthop Relat Res 2002; (405) 207-215
29
Higuera CA,
Inoue N,
Lim JS.
et al.
Tendon reattachment to a metallic implant using an allogenic bone plate augmented with rhOP-1 vs. autogenous cancellous bone and marrow in a canine model. J Orthop Res 2005; 23: 1091-1099
31
Kawai A,
Backus SI,
Otis JC.
et al.
Gait characteristics of patients after proximal femoral replacement for malignant bone tumour. J Bone Joint Surg Br 2000; 82: 666-669
32
Paquay YC,
de Ruijter JE,
van der Waerden JP.
et al.
Tissue reaction to Dacron velour and titanium fibre mesh used for anchorage of percutaneous devices. Biomaterials 1996; 17: 1251-1256
37
Hardes J,
von Eiff C,
Streitbuerger A.
et al.
Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol 2010; 101: 389-395
38
Glehr M,
Leithner A,
Friesenbichler J.
et al.
Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J 2013; 95-B: 988-992
39
Scoccianti G,
Frenos F,
Beltrami G.
et al.
Levels of silver ions in body fluids and clinical results in silver-coated megaprostheses after tumour, trauma or failed arthroplasty. Injury 2016; 47 (Suppl. 04) S11-S16