Subscribe to RSS
DOI: 10.1055/a-0626-6219
Der Baroreflex: Physiologie, klinische Bedeutung und Diagnostik
Baroreflex: Physiology, Clinical Relevance and Diagnostic ProceduresPublication History
Publication Date:
25 July 2018 (online)
Zusammenfassung
Der Baroreflex ist ein Mechanismus zur Aufrechterhaltung der kardiovaskulären Homöostase. Ein Anstieg des Blutdruckes führt, vermittelt durch das vegetative Nervensystem, gegenregulatorisch zu einem Abfall der Herzfrequenz und zu einer Dilatation der Widerstandsgefäße und umgekehrt. Dadurch werden überschießende Blutdruckschwankungen verhindert. Das Ausmaß der Baroreflexantwort ist ein starker und unabhängiger Prädiktor für Überleben und kardiale Ereignisse. Bei Erkrankungen des Herzkreislaufsystems liegt häufig ein pathologisch abgeschwächter Baroreflex vor. Adäquates Therapieansprechen dieser Patienten kann neben einer verbesserten Prognose mit einer Normalisierung der Baroreflexantwort einhergehen. Eine quantitative Beschreibung der Baroreflexantwort auf Blutdruckschwankungen ist die Baroreflexsensitivität (BRS). Es existieren verschiedene Methoden zur Bestimmung der Baroreflexsensitivität. Um die flächendeckende Implementierung dieser Verfahren in der klinischen Routine voranzutreiben, werden in Zukunft eine Optimierung in Bezug auf Messbarkeit und Reliabilität, die Etablierung von Referenzwerten sowie große prospektive Validierungsstudien vonnöten sein.
Abstract
The baroreflex is a key homeostatic mechanism of the cardiovascular system mediated by the autonomous nervous system. An increase of arterial blood pressure leads to a decrease of heart rate and arterial resistance and vice versa. This mechanism prevents excessive fluctuations and maintains a stable steady state of arterial blood pressure. The extent of baroreflex activity is a strong and independent risk predictor of mortality and adverse cardiac events. Diseases of the cardiovascular system are commonly linked to reduced baroreflex function. Good therapy response under these conditions correlates not only with an improved prognosis but also with a significant improvement of baroreflex function. Baroreflex sensitivity (BRS) is the quantitative description of the baroreflex gain in response to blood pressure changes. So far, several approaches have been proposed to assess baroreflex sensitivity. To render BRS assessment feasible in daily clinical routine, the following requirements will have to be addressed: optimization of the methods in terms of measurability and reliability; establishment of reference values; large prospective clinical validation trials.
-
Literatur
- 1 Abraham WT, Zile MR, Weaver FA. et al. Baroreflex Activation Therapy for the Treatment of Heart Failure With a Reduced Ejection Fraction. JACC. Heart failure 2015; 3: 487-496
- 2 Barthel P, Bauer A, Muller A. et al. Spontaneous baroreflex sensitivity: Prospective validation trial of a novel technique in survivors of acute myocardial infarction. Heart rhythm: The official journal of the Heart Rhythm Society 2012; 9: 1288-1294
- 3 Bauer A, Barthel P, Muller A. et al. Bivariate phase-rectified signal averaging – a novel technique for cross-correlation analysis in noisy nonstationary signals. Journal of electrocardiology 2009; 42: 602-606
- 4 Bauer A, Kantelhardt JW, Barthel P. et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: Cohort study. Lancet 2006; 367: 1674-1681
- 5 Bauer A, Morley-Davies A, Barthel P. et al. Bivariate phase-rectified signal averaging for assessment of spontaneous baroreflex sensitivity: Pilot study of the technology. Journal of electrocardiology 2010; 43: 649-653
- 6 Bernardi L, Bianchini B, Spadacini G. et al. Demonstrable cardiac reinnervation after human heart transplantation by carotid baroreflex modulation of RR interval. Circulation 1995; 92: 2895-2903
- 7 Bernardi L, Rosengard-Barlund M, Sandelin A. et al. Short-term oxygen administration restores blunted baroreflex sensitivity in patients with type 1 diabetes. Diabetologia 2011; 54: 2164-2173
- 8 Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation 1982; 66: 874-880
- 9 Bristow JD, Honour AJ, Pickering TG. et al. Cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovascular research 1969; 3: 476-485
- 10 Colombo R, Mazzuero G, Spinatonda G. et al. Comparison between spectral analysis and the phenylephrine method for the assessment of baroreflex sensitivity in chronic heart failure. Clin Sci (Lond) 1999; 97: 503-513
- 11 Cowley Jr. AW, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circulation research 1973; 32: 564-576
- 12 Cyon E, Ludwig C. Die Reflexe eines der sensiblen Nerven des Herzens auf die motorischen der Blutgefässe. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe 1866; 18: 307-328
- 13 Disertori M, Mase M, Rigoni M. et al. Heart Rate Turbulence Is a Powerful Predictor of Cardiac Death and Ventricular Arrhythmias in Postmyocardial Infarction and Heart Failure Patients: A Systematic Review and Meta-Analysis. Circulation. Arrhythmia and electrophysiology 2016; 9: e004610
- 14 Eckberg DL, Cavanaugh MS, Mark AL. et al. A simplified neck suction device for activation of carotid baroreceptors. The Journal of laboratory and clinical medicine 1975; 85: 167-173
- 15 Eckberg DL, Sleight P. Human baroreflexes in health and disease. Oxford: Clarendon Press; 1992
- 16 Green JH, Heffron PF. Studies upon the relationship between baroreceptor and sympathetic activity. Quarterly journal of experimental physiology and cognate medical sciences 1968; 53: 23-32
- 17 Hering HE. Der Karotisdruckversuch. Münchner Medizinische Wochenschrift 1923; 42: 1267-1290
- 18 Hering HE. Die Karotissinusreflexe auf Herz und Gefässe vom normal-physiologischen, pathologisch-physiologischen und klinischen Standpunkt. T. Steinkopff 1927
- 19 Iriuchijima J, Kumada M. Efferent Cardiac Vagal Discharge of the Dog in Response to Electrical Stimulation of Sensory Nerves. The Japanese journal of physiology 1963; 13: 599-605
- 20 Ito K, Sato A, Shimamura K. et al. Reflex changes in sympatho-adrenal medullary functions in response to baroreceptor stimulation in anesthetized rats. Journal of the autonomic nervous system 1984; 10: 295-303
- 21 Koizumi K, Seller H, Kaufman A. et al Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain research 1971; 27: 281-294
- 22 La Rovere MT, Bersano C, Gnemmi M. et al. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation 2002; 106: 945-949
- 23 La Rovere MT, Bigger Jr. JT, Marcus FI. et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998; 351: 478-484
- 24 La Rovere MT, Maestri R, Robbi E. et al. Comparison of the prognostic values of invasive and noninvasive assessments of baroreflex sensitivity in heart failure. Journal of hypertension 2011; 29: 1546-1552
- 25 La Rovere MT, Pinna GD, Raczak G. Baroreflex sensitivity: Measurement and clinical implications. Annals of noninvasive electrocardiology: The official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc 2008; 13: 191-207
- 26 Maestri R, Pinna GD, Mortara A. et al. Assessing baroreflex sensitivity in post-myocardial infarction patients: Comparison of spectral and phenylephrine techniques. Journal of the American College of Cardiology 1998; 31: 344-351
- 27 Mortara A, La Rovere MT, Pinna GD. et al. Arterial baroreflex modulation of heart rate in chronic heart failure: Clinical and hemodynamic correlates and prognostic implications. Circulation 1997; 96: 3450-3458
- 28 Mrowka R, Persson PB, Theres H. et al. Blunted arterial baroreflex causes „pathological“ heart rate turbulence. American journal of physiology. Regulatory, integrative and comparative physiology 2000; 279: R1171-R1175
- 29 Muller A, Morley-Davies A, Barthel P. et al. Bivariate phase-rectified signal averaging for assessment of spontaneous baroreflex sensitivity: Normalization of the results. Journal of electrocardiology 2012; 45: 77-81
- 30 Nijima A. Baroreceptor effects on renal and adrenal nerve activity. The American journal of physiology 1976; 230: 1733-1736
- 31 Ormezzano O, Cracowski JL, Quesada JL. et al. EVAluation of the prognostic value of BARoreflex sensitivity in hypertensive patients: The EVABAR study. Journal of hypertension 2008; 26: 1373-1378
- 32 Osculati G, Grassi G, Giannattasio C. et al. Early alterations of the baroreceptor control of heart rate in patients with acute myocardial infarction. Circulation 1990; 81: 939-948
- 33 Pagani M, Somers V, Furlan R. et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 1988; 12: 600-610
- 34 Palmero HA, Caeiro TF, Iosa DJ. et al. Baroreceptor reflex sensitivity index derived from Phase 4 of te Valsalva maneuver. Hypertension 1981; 3: II-134-II-137
- 35 Parati G, Casadei R, Groppelli A. et al. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989; 13: 647-655
- 36 Parati G, Di Rienzo M, Bertinieri G. et al. Evaluation of the baroreceptor-heart rate reflex by 24- hour intra-arterial blood pressure monitoring in humans. Hypertension 1988; 12: 214-222
- 37 Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. Journal of hypertension 2000; 18: 7-19
- 38 Parati G, Frattola A, Di Rienzo M. et al. Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. The American journal of physiology 1995; 268: H1606-H1612
- 39 Parati G, Saul JP, Castiglioni P. Assessing arterial baroreflex control of heart rate: new perspectives. Journal of hypertension 2004; 22: 1259-1263
- 40 Pickering TG, Davies J. Estimation of the conduction time of the baroreceptor-cardiac reflex in man. Cardiovascular research 1973; 7: 213-219
- 41 Pickering TG, Gribbin B, Sleight P. Comparison of the reflex heart rate response to rising and falling arterial pressure in man. Cardiovascular research 1972; 6: 277-283
- 42 Pinna GD, La Rovere MT, Maestri R. et al. Comparison between invasive and non-invasive measurements of baroreflex sensitivity; implications for studies on risk stratification after a myocardial infarction. European heart journal 2000; 21: 1522-1529
- 43 Pinna GD, Maestri R. New criteria for estimating baroreflex sensitivity using the transfer function method. Medical & biological engineering & computing 2002; 40: 79-84
- 44 Pinna GD, Maestri R. Reliability of transfer function estimates in cardiovascular variability analysis. Medical & biological engineering & computing 2001; 39: 338-347
- 45 Pinna GD, Maestri R, Capomolla S. et al. Applicability and clinical relevance of the transfer function method in the assessment of baroreflex sensitivity in heart failure patients. Journal of the American College of Cardiology 2005; 46: 1314-1321
- 46 Pinna GD, Maestri R, La Rovere MT. Assessment of baroreflex sensitivity from spontaneous oscillations of blood pressure and heart rate: proven clinical value?. Physiological measurement 2015; 36: 741-753
- 47 Pinna GD, Maestri R, Raczak G. et al. Measuring baroreflex sensitivity from the gain function between arterial pressure and heart period. Clin Sci (Lond) 2002; 103: 81-88
- 48 Pitzalis MV, Mastropasqua F, Passantino A. et al. Comparison between noninvasive indices of baroreceptor sensitivity and the phenylephrine method in post-myocardial infarction patients. Circulation 1998; 97: 1362-1367
- 49 Raczak G, La Rovere MT, Pinna GD. et al. Assessment of baroreflex sensitivity in patients with preserved and impaired left ventricular function by means of the Valsalva manoeuvre and the phenylephrine test. Clin Sci (Lond) 2001; 100: 33-41
- 50 Rizas KD, Nieminen T, Barthel P. et al. Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. The Journal of clinical investigation 2014; 124: 1770-1780
- 51 Roach D, Koshman ML, Duff H. et al. Induction of heart rate and blood pressure turbulence in the electrophysiologic laboratory. The American journal of cardiology 2002; 90: 1098-1102
- 52 Robbe HW, Mulder LJ, Ruddel H. et al. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 1987; 10: 538-543
- 53 Schmidt G, Malik M, Barthel P. et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 1999; 353: 1390-1396
- 54 Schmidt RF, Lang F. Physiologie des Menschen mit Pathophysiologie. 2007; 30: 457-459
- 55 Schwartz PJ, Billman GE, Stone HL. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 1984; 69: 790-800
- 56 Schwartz PJ, Vanoli E, Stramba-Badiale M. et al. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation 1988; 78: 969-979
- 57 Segerson NM, Wasmund SL, Abedin M. et al. Heart rate turbulence parameters correlate with post-premature ventricular contraction changes in muscle sympathetic activity. Heart rhythm: The official journal of the Heart Rhythm Society 2007; 4: 284-289
- 58 Sleight P, La Rovere MT, Mortara A. et al. Physiology and pathophysiology of heart rate and blood pressure variability in humans: Is power spectral analysis largely an index of baroreflex gain?. Clin Sci (Lond) 1995; 88: 103-109
- 59 Smith SA, Stallard TJ, Salih MM. et al. Can sinoaortic baroreceptor heart rate reflex sensitivity be determined from phase IV of the Valsalva manoeuvre?. Cardiovascular research 1987; 21: 422-427
- 60 Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circulation research 1969; 24: 109-121
- 61 Thames MD, Kontos HA. Mechanisms of baroreceptor-induced changes in heart rate. The American journal of physiology 1970; 218: 251-256
- 62 Van De Vooren H, Gademan MG, Haest JCW. et al. Non-invasive baroreflex sensitivity assessment in heart failure patients with frequent episodes of non-sinus rhythm. Computers in Cardiology 2006; 33: 637-640
- 63 Van De Vooren H, Gademan MG, Swenne CA. et al. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients. J Appl Physiol (1985) 2007; 102: 1348-1356
- 64 Wallbach M, Koziolek MJ. Baroreceptors in the carotid and hypertension-systematic review and meta-analysis of the effects of baroreflex activation therapy on blood pressure. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2017
- 65 Yamashita H, Koizumi K. Influence of carotid and aortic baroreceptors on neurosecretory neurons in supraoptic nuclei. Brain research 1979; 170: 259-277