Subscribe to RSS
DOI: 10.1055/a-0642-1775
Neue Therapien der spinalen Muskelatrophie
Novel Therapies of Spinal Muscular AtrophyPublication History
Publication Date:
01 August 2018 (online)
Zusammenfassung
Die 5q-assoziierte spinale Muskelatrophie (5q-SMA) ist eine progressive autosomal rezessive Motoneuronerkrankung mit einer Inzidenz von 1 in 10 000 Geburten. Die 5q-SMA ist durch den Verlust des Survival Motor Neuron 1 Gens (SMN1) verursacht. Sie stellt die häufigste neurodegenerative Erkrankung im Kindesalter dar. 126 Jahre nach der Erstbeschreibung durch Hofmann kam es 2017 zur Erstzulassung einer spezifischen Therapie der SMA in Deutschland. Durch eine Erhöhung des Anteils an funktionsfähigem SMN-Protein, die entweder durch Einschluss von Exon 7 in SNM2-Transkripte, Erhöhung der SMN2-Genexpression oder durch direkten Genersatz von SMN1 erzielt werden kann, ist eine spezifische Therapie nun möglich geworden. Zahlreiche Fragen – was ist der Zeitpunkt für eine optimale therapeutische Intervention, welche therapeutische Maßnahme ist die geeignetste, was sind mögliche Wechselwirkungen gentherapeutischer Maßnahmen – bleiben derzeit noch ungeklärt. Die Kenntnis der klinischen Symptome der SMA und das Wissen um eine spezifische Therapie werden diese bislang als unbehandelbar geltende Erkrankung neu in den medizinischen Fokus bringen, sodass ein früher, nach Möglichkeit präsymptomatischer Therapiebeginn das Outcome im Vergleich zu einem späteren Therapiebeginn entscheidend verbessern wird.
Abstract
5q-associated spinal muscular atrophy (5q-SMA) is a progressive autosomal recessive motor neuron disease with an incidence of 1:10 000 in live births. All types of 5q-SMA are caused by the loss of the survival motor neuron 1 gene (SMN1). SMA represents the most frequent neurodegenerative disorder in children. 126 years after the first description of SMA by Hoffmann, SMA became treatable by a licensed drug. Aggregation of the full-length SMN protein by increasing the inclusion of exon 7 in SMN2 transcripts, enhancing SMN2 gene expression, stabilizing the SMN protein, or replacing the SMN1 gene opened the therapeutic avenues. Although the SMA research field is rapidly growing, there are still several remaining questions: what is the optimal timing for the intervention, particularly at which point is there irreversible pathology that precludes any meaningful therapeutic response? Knowledge and increased awareness of the disease will help narrowing down the diagnostic delay, which will be crucial for the best therapeutic success.
-
Literatur
- 1 Werdnig G. Zwei frühinfantile hereditäre Fälle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage. Arch Psychiatr Nervenkr 1891; 22: 437-480
- 2 Hoffmann J. Über chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis. Dtsch Z Nervenheilkunde 1893; 3: 427-470
- 3 Kugelberg E, Welander L. Heredofamilial juvenile muscular atrophy simulating muscular dystrophy. Arch Neurol 1956; 75: 500
- 4 Kennedy WR, Alter M, Sung JH. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 1968; 18: 671-680
- 5 D’Ámico A, Mercuri E, Titiano FD. et al. Spinal muscular atrophy. Orphanet J Rare dis 2011; 6: 71
- 6 Scoto M, Finkel RS, Mercuri E. et al. Therapeutic approaches for spinal muscular atrophy (SMA). Gene Therapy 2017; 24: 514-519
- 7 Parente V, Corti S. Advances in spinal muscular atrophy therapeutics. Ther Adv Neurol Disord 2018; 11: 1-13
- 8 Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin 2015; 33: 831-846
- 9 Tisdale S, Pellizzoni L. Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J Neurosci 2015; 35: 8691-8700
- 10 Klug C, Schreiber-Katz O, Thiele S. et al. Disease burden of spinal muscular atrophy in Germany. OJRD 2016; 11: 58
- 11 Bordet T, Berna P, Abitbol JL. et al. Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals 2010; 3: 345-368
- 12 Bertini E, Dessaud E, Mercuri E. et al. Olesoxime SMA Phase 2 Study Investigators. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16: 513-522
- 13 Cytogenetics announces orphan drug designation CK-2127107. http://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-announces-orphan-drug-designation-ck-2127107
- 14 Oral presentaion at the Cure SMA 2017 Annual SMA Conference in Orlando, Florida. 2017 https://smanewstoday.com/2017/07/11/cytokinetics-baseline-data-phase-2-clinical-trial-ck-2127107-patients-sma/
- 15 Corti S, Nizzardo M, Nardini M. et al. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008; 118: 3316-3330
- 16 Corti S, Nizzardo M, Nardini M. et al. Embryonicstem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 2010; 133: 465-481
- 17 Baranello G, Day J, Klein A. et al. FIREFISH, a multi-center, open-label trial to investigate the safety and efficacy of RG7919 in babies with type 1 SMA: study update and real-life experince of study implementation. Oral presentation, Scientific Congress on Spinal Muscular Atrophy.. Krakau, Poland, 25–27 January 2018
- 18 Charnas L, Voltz E, Pfister C. et al. Safety and efficacy findings in the first-in-human trial (FIH) of the oral splice modulator branaplam in type 1 spinal muscular atrophy (SMA): interim results. Neuromuscul Disord 2017; 27: 207-208
- 19 Kolb SJ, Coffey CS, Yankey JW. et al. NeuroNEXT Clinical Trial Network and on behalf of the NN101 SMA Biomarker Investigators. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol 2016; 3: 132-145
- 20 Passini MA, Bu J, Richards AM. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011; 3: 72ra18
- 21 Finkel RS, Chiriboga CA, Vajsar J. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017-3026
- 22 Chiriboga CA, Swoboda KJ, Darras BT. et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016; 86: 890-897
- 23 Finkel RS, Mercuri E, Darras BT. et al. ENDEAR Study Group. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017; 377: 1723-1732
- 24 Lorenz HM, Kühnle I, Edler J. et al. Intrathekale Nusinersen-Therapie bei Kindern mit Spinaler Muskelatrophie und Wirbelsäulendeformitäten. Klin Pädiatr 2018; [Epub ahead of print]
- 25 Dominguez E, Marais T, Chatauret N. et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011; 20: 681-693
- 26 Mendell JR, Al-Zaidy S, Shell R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377: 1713-1722
- 27 Rudnik-Schöneborn S, Berg C, Zerres K. et al. Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling. Clin Genet 2009; 76: 168-178
- 28 Finkel RS, McDermott MP, Kaufmann P. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014; 83: 810-817
- 29 Vill K, Blaschek A, Schara U. et al. Spinal muscular atrophy: time for newborn screening?. Nervenarzt 2017; 88: 1358-1366
- 30 Mercuri E, Finkel RS, Muntoni F. SMA Care Group. et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28: 103-115
- 31 Finkel RS, Mercuri E, Meyer OH. et al. SMA Care group. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28: 197-207