Subscribe to RSS
DOI: 10.1055/a-0647-0420
Keramikimplantate: Was wissen wir?
Ceramic Implants: What Do We Know?Publication History
Publication Date:
09 October 2018 (online)
Zusammenfassung
In der modernen Zahnmedizin bieten sich Keramikimplantate als Pfeiler für implantatgetragene Restaurationen an. Auch Patienten interessieren sich immer häufiger für metallfreie Versorgungen – sowohl bei der prothetischen Restauration („Was kommt auf mein Implantat?“) als auch bei der Wahl des Materials („Woraus besteht mein Implantat?“). Für den Behandler stellt sich daher die Frage: „Kann ich keramische Implantate bedenkenlos anbieten?“
Abstract
In modern dentistry, there is a great interest in metal-free restorations; this also applies to ceramic implants. Many ceramic implant systems are already available on the dental market – some without scientific validation. More preclinical and clinical (long-term) data is urgently needed to prove the safety and reliability of the systems. Particularly for two-part implants and extended indications there are currently no reliable data available. Ceramic implants today consist of various modifications of ZrO2. New zirconia-based dispersion ceramics, metal-free and screw-retained implant-abutment connections as well as more favorable manufacturing processes represent future development trends. The osseointegration of ZrO2 implants and titanium implants is comparable. The optimal roughness and the optimal surface treatment of ceramic implants are still discussed controversially. ZrO2 seems to be “soft tissue friendly”. The survival rate of ZrO2 implants is more than 95% after 12 months.
-
Zahlreiche Keramikimplantat-Systeme sind bereits auf dem Dentalmarkt erhältlich – manche davon ohne wissenschaftliche Validierung.
-
Es werden dringend weitere präklinische und klinische (Langzeit-)Daten benötigt, um die Sicherheit und Verlässlichkeit der Systeme nachzuweisen. Vor allem zu zweiteiligen Implantaten und erweiterten Indikationen liegen derzeit keine validen Daten vor.
-
Keramikimplantate bestehen heutzutage aus verschiedenen Modifikationen des ZrO2.
-
Neue Dispersionskeramiken auf Zirkoniumdioxidbasis, metallfreie und verschraubte Implantat-Abutment-Verbindungen sowie günstigere Herstellungsverfahren stellen zukünftige Entwicklungstendenzen dar.
-
Die Osseointegration von ZrO2-Implantaten und Titanimplantaten ist vergleichbar.
-
Die optimale Rauigkeit und die optimale Oberflächenbehandlung von keramischen Implantaten werden noch kontrovers diskutiert.
-
ZrO2 scheint weichgewebefreundlich zu sein.
-
Die Überlebensrate von ZrO2-Implantaten liegt nach 12 Monaten bei über 95%.
-
Literatur
- 1 Hosoki M, Nishigawa K, Miyamoto Y. et al. Allergic contact dermatitis caused by titanium screws and dental implants. J Prosthodont Res 2016; 60: 213-219 doi:10.1016/j.jpor.2015.12.004
- 2 Javed F, Al-Hezaimi K, Almas K. et al. Is titanium sensitivity associated with allergic reactions in patients with dental implants? A systematic review. Clin Implant Dent Relat Res 2013; 15: 47-52 doi:10.1111/j.1708-8208.2010.00330.x
- 3 Addison O, Davenport AJ, Newport RJ. et al. Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear?. J R Soc Interface 2012; 9: 3161-3164 doi:10.1098/rsif.2012.0438
- 4 Jacobi-Gresser E, Huesker K, Schutt S. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg 2013; 42: 537-543 doi:10.1016/j.ijom.2012.07.018
- 5 Moraschini V, Poubel LA, Ferreira VF. et al. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg 2015; 44: 377-388 doi:10.1016/j.ijom.2014.10.023
- 6 Jung RE, Zembic A, Pjetursson BE. et al. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res 2012; 23 (Suppl. 06) 2-21 doi:10.1111/j.1600-0501.2012.02547.x
- 7 Pjetursson BE, Thoma D, Jung R. et al. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res 2012; 23 (Suppl. 06) 22-38 doi:10.1111/j.1600-0501.2012.02546.x
- 8 Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol 2015; 42 (Suppl. 16) S158-S171 doi:10.1111/jcpe.12334
- 9 Canullo L, Schlee M, Wagner W. et al. International brainstorming meeting on etiologic and risk factors of peri-implantitis, Montegrotto (Padua, Italy), August 2014. Int J Oral Maxillofac Implants 2015; 30: 1093-1104 doi:10.11607/jomi.4386
- 10 Fretwurst T, Nelson K, Tarnow DP. et al. Is metal particle release associated with peri-implant bone destruction? An emerging concept. J Dent Res 2018; 97: 259-265 doi:10.1177/0022034517740560
- 11 Fretwurst T, Buzanich G, Nahles S. et al. Metal elements in tissue with dental peri-implantitis: a pilot study. Clin Oral Implants Res 2016; 27: 1178-1186 doi:10.1111/clr.12718
- 12 Kaufman AM, Alabre CI, Rubash HE. et al. Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles: analysis of multiple cytokines using protein arrays. J Biomed Mater Res A 2008; 84: 464-474 doi:10.1002/jbm.a.31467
- 13 Sikora CL, Alfaro MF, Yuan JC. et al. Wear and corrosion interactions at the titanium/zirconia interface: dental implant application. J Prosthodont 2018;
- 14 Olmedo DG, Tasat DR, Evelson P. et al. In vivo comparative biokinetics and biocompatibility of titanium and zirconium microparticles. J Biomed Mater Res A 2011; 98: 604-613 doi:10.1002/jbm.a.33145
- 15 Olmedo D, Guglielmotti MB, Cabrini RL. An experimental study of the dissemination of Titanium and Zirconium in the body. J Mater Sci Mater Med 2002; 13: 793-796
- 16 Schwarz F, John G, Hegewald A. et al. Non-surgical treatment of peri- implant mucositis and peri-implantitis at zirconia implants: a prospective case series. J Clin Periodontol 2015;
- 17 John G, Becker J, Schmucker A. et al. Non-surgical treatment of peri- implant mucositis and peri-implantitis at two-piece zirconium implants: A clinical follow-up observation after up to 3 years. J Clin Periodontol 2017; 44: 756-761 doi:10.1111/jcpe.12738
- 18 Greenbaum DS, Masri R, Driscoll CF. Prosthodontic rehabilitation of dental implants with exposed threads: a clinical report. J Prosthet Dent 2011; 105: 351-355 doi:10.1016/S0022-3913(11)00071-0
- 19 Cosgarea R, Gasparik C, Dudea D. et al. Peri-implant soft tissue colour around titanium and zirconia abutments: a prospective randomized controlled clinical study. Clin Oral Implants Res 2015; 26: 537-544 doi:10.1111/clr.12440
- 20 Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. New York, USA: Cornell University Press; 1960
- 21 Sandhaus S. Tecnica e strumentario dellʼ impianto C.B.S. (Cristalline Bone Screw). Inf Odontostomatol 1968; 4: 19-24
- 22 Schulte W, Heimke G. Das Tübinger Sofort-Implantat. Quintessenz 1976; 27: 17-23
- 23 Münch M. Das Sofort- und Spätimplantat nach Münch aus Al2O3-Keramik. ZWR 1984; 93: 904-907
- 24 Sandhaus S. Lʼimplant endo-osseux Cerasand. Actualité Odontostomatologie 1987; 41: 607-626
- 25 Andreiotelli M, Wenz HJ, Kohal RJ. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 2009; 20 (Suppl. 04) 32-47 doi:10.1111/j.1600-0501.2009.01785.x
- 26 Meyenberg KH, Lüthy H, Schärer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995; 7: 73-80
- 27 Yildirim M, Edelhoff D, Hanisch O. et al. Ceramic abutments-a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000; 20: 81-91
- 28 Akagawa Y, Ichikawa Y, Nikai H. et al. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent 1993; 69: 599-604
- 29 Kohal RJ, Klaus G, Strub JR. Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation. Clin Oral Implants Res 2006; 17: 565-571 doi:10.1111/j.1600-0501.2006.01252.x
- 30 Bächle M, Butz F, Hübner U. et al. Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. Clin Oral Implants Res 2007; 18: 53-59 doi:10.1111/j.1600-0501.2006.01292.x
- 31 Mellinghoff J. Erste klinische Ergebnisse zu dentalen Schraubenimplantaten aus Zirkonoxid. Z Zahnärztl Impl 2006; 22: 288-293
- 32 Pieralli S, Kohal RJ, Jung RE. et al. Clinical outcomes of zirconia dental implants: A systematic review. J Dent Res 2017; 96: 38-46 doi:10.1177/0022034516664043
- 33 Pieralli S, Kohal RJ, Lopez Hernandez E. et al. Osseointegration of zirconia dental implants in animal investigations: A systematic review and meta- analysis. Dent Mater 2018; 34: 171-182 doi:10.1016/j.dental.2017.10.008
- 34 Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25
- 35 Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018; 97: 140-147 doi:10.1177/0022034517737483
- 36 Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008; 24: 289-298 doi:10.1016/j.dental.2007.05.005
- 37 Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia‐ containing ceramics. J Amer Cer Soc 2004; 83: 461-487 doi:10.1111/j.1151-2916.2000.tb01221.x
- 38 Keuper M, Eder K, Berthold C. et al. Direct evidence for continuous linear kinetics in the low-temperature degradation of Y-TZP. Acta Biomater 2013; 9: 4826-4835 doi:10.1016/j.actbio.2012.08.032
- 39 Jérôme C, Bernard C, Michel DJ. Low-Temperature Aging of Y-TZP Ceramics. J Am Ceram Soc 1999; 82: 2150-2154 doi:10.1111/j.1151-2916.1999.tb02055.x
- 40 Lughi V, Sergo V. Low temperature degradation-aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 2010; 26: 807-820 doi:10.1016/j.dental.2010.04.006
- 41 Spies BC, Maass ME, Adolfsson E. et al. Long-term stability of an injection-molded zirconia bone-level implant: A testing protocol considering aging kinetics and dynamic fatigue. Dent Mater 2017; 33: 954-965 doi:10.1016/j.dental.2017.06.002
- 42 Sanon C, Chevalier J, Douillard T. et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater 2013; 29: 389-397 doi:10.1016/j.dental.2013.01.007
- 43 Altmann B, Karygianni L, Al Ahmad A. et al. Assessment of Novel Long Lasting Ceria Stabilized Zirconia Based Ceramics with Different Surface Topographies as Implant Materials. Adv Func Mater 2017; 27: 1702512 doi:10.1002/adfm.201702512
- 44 Janner SFM, Gahlert M, Bosshardt DD. et al. Bone response to functionally loaded, two-piece zirconia implants: A preclinical histometric study. Clin Oral Implants Res 2018; 29: 277-289 doi:10.1111/clr.13112
- 45 Saulacic N, Erdosi R, Bosshardt DD. et al. Acid and alkaline etching of sandblasted zirconia implants: a histomorphometric study in miniature pigs. Clin Implant Dent Relat Res 2014; 16: 313-322 doi:10.1111/cid.12070
- 46 Nakamura K, Kanno T, Milleding P. et al. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont 2010; 23: 299-309
- 47 Scarano A, Piattelli M, Caputi S. et al. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004; 75: 292-296 doi:10.1902/jop.2004.75.2.292
- 48 Sanz-Martin I, Sanz-Sanchez I, Carrillo de Albornoz A. et al. Effects of modified abutment characteristics on peri-implant soft tissue health: A systematic review and meta-analysis. Clin Oral Implants Res 2018; 29: 118-129 doi:10.1111/clr.13097
- 49 Nothdurft FP, Fontana D, Ruppenthal S. et al. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: A comparison of materials and surface topographies. Clin Implant Dent Relat Res 2015; 17: 1237-1249 doi:10.1111/cid.12253
- 50 Kohal RJ, Wolkewitz M, Mueller C. Alumina-reinforced zirconia implants: survival rate and fracture strength in a masticatory simulation trial. Clin Oral Implants Res 2010; 21: 1345-1352 doi:10.1111/j.1600-0501.2010.01954.x
- 51 Spies BC, Sauter C, Wolkewitz M. et al. Alumina reinforced zirconia implants: effects of cyclic loading and abutment modification on fracture resistance. Dent Mater 2015; 31: 262-272 doi:10.1016/j.dental.2014.12.013
- 52 Brull F, van Winkelhoff AJ, Cune MS. Zirconia dental implants: a clinical, radiographic, and microbiologic evaluation up to 3 years. Int J Oral Maxillofac Implants 2014; 29: 914-920 doi:10.11607/jomi.3293
- 53 Payer M, Heschl A, Koller M. et al. All-ceramic restoration of zirconia two- piece implants-a randomized controlled clinical trial. Clin Oral Implants Res 2015; 26: 371-376 doi:10.1111/clr.12342
- 54 Cionca N, Müller N, Mombelli A. Two-piece zirconia implants supporting all-ceramic crowns: a prospective clinical study. Clin Oral Implants Res 2015; 26: 413-418 doi:10.1111/clr.12370
- 55 Becker J, John G, Becker K. et al. Clinical performance of two-piece zirconia implants in the posterior mandible and maxilla: a prospective cohort study over 2 years. Clin Oral Implants Res 2017; 28: 29-35 doi:10.1111/clr.12610
- 56 Hashim D, Cionca N, Courvoisier DS. et al. A systematic review of the clinical survival of zirconia implants. Clin Oral Investig 2016; 20: 1403-1417 doi:10.1007/s00784-016-1853-9
- 57 Spies BC, Nold J, Vach K. et al. Two-piece zirconia oral implants withstand masticatory loads: An investigation in the artificial mouth. J Mech Behav Biomed Mater 2016; 53: 1-10 doi:10.1016/j.jmbbm.2015.07.005
- 58 Cannizzaro G, Torchio C, Felice P. et al. Immediate occlusal versus non-occlusal loading of single zirconia implants. A multicentre pragmatic randomised clinical trial. Eur J Oral Implantol 2010; 3: 111-120
- 59 Grassi FR, Capogreco M, Consonni D. et al. Immediate occlusal loading of one-piece zirconia implants: five-year radiographic and clinical evaluation. Int J Oral Maxillofac Implants 2015; 30: 671-680 doi:10.11607/jomi.3831
- 60 Payer M, Heschl A, Koller M. et al. All-ceramic restoration of zirconia two-piece implants-a randomized controlled clinical trial. Clin Oral Implants Res 2015; 26: 371-376 doi:10.1111/clr.12342
- 61 Kohal RJ, Spies BC, Bauer A. et al. One-piece zirconia oral implants for single-tooth replacement: Three-year results from a long-term prospective cohort study. J Clin Periodontol 2018; 45: 114-124 doi:10.1111/jcpe.12815
- 62 Kniha K, Schlegel KA, Kniha H. et al. Evaluation of peri-implant bone levels and soft tissue dimensions around zirconia implants-a three-year follow- up study. Int J Oral Maxillofac Surg 2018; 47: 492-498 doi:10.1016/j.ijom.2017.10.013
- 63 Spies BC, Balmer M, Patzelt SB. et al. Clinical and patient-reported outcomes of a zirconia oral implant: Three-year results of a prospective cohort investigation. J Dent Res 2015; 94: 1385-1391 doi:10.1177/0022034515598962
- 64 Balmer M, Spies BC, Vach K. et al. Three-year analysis of zirconia implants used for single-tooth replacement and three-unit fixed dental prostheses: A prospective multicenter study. Clin Oral Implants Res 2018; 29: 290-299 doi:10.1111/clr.13115
- 65 Cionca N, Müller N, Mombelli A. Two-piece zirconia implants supporting all-ceramic crowns: a prospective clinical study. Clin Oral Implants Res 2015; 26: 413-418 doi:10.1111/clr.12370
- 66 Oliva J, Oliva X, Oliva JD. Five-year success rate of 831 consecutively placed Zirconia dental implants in humans: a comparison of three different rough surfaces. Int J Oral Maxillofac Implants 2010; 25: 336-344
- 67 Spies BC, Stampf S, Kohal RJ. Evaluation of zirconia-based all-ceramic single crowns and fixed dental prosthesis on zirconia implants: 5-year results of a prospective cohort study. Clin Implant Dent Relat Res 2015; 17: 1014-1028 doi:10.1111/cid.12203
- 68 Spies BC, Balmer M, Jung RE. et al. All-ceramic, bi-layered crowns supported by zirconia implants: Three-year results of a prospective multicenter study. J Dent 2017; 67: 58-65 doi:10.1016/j.jdent.2017.09.008
- 69 Spies BC, Pieralli S, Vach K. et al. CAD/CAM-fabricated ceramic implant-supported single crowns made from lithium disilicate: Final results of a 5-year prospective cohort study. Clin Implant Dent Relat Res 2017; 19: 876-883 doi:10.1111/cid.12508
- 70 Spies BC, Witkowski S, Butz F. et al. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation. Clin Oral Implants Res 2016; 27: 1265-1273 doi:10.1111/clr.12731
- 71 Osman RB, Swain MV, Atieh M. et al. Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial. Clin Oral Implants Res 2014; 25: 1366-1377 doi:10.1111/clr.12272
- 72 Osman RB, Elkhadem AH, Ma S. et al. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2013; 28: e198-e208 doi:10.11607/jomi.3019
- 73 Kohorst P, Borchers L, Strempel J. et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater 2012; 8: 1213-1220 doi:10.1016/j.actbio.2011.11.016
- 74 Attaoui HE, Saâdaoui M, Chevalier J. et al. Static and cyclic crack propagation in Ce-TZP ceramics with different amounts of transformation toughening. J Eur Cer Soc 2007; 27: 483-486 doi:10.1016/j.jeurceramsoc.2006.04.108
- 75 Reveron H, Fornabaio M, Palmero P. et al. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability. Acta Biomater 2017; 48: 423-432 doi:10.1016/j.actbio.2016.11.040
- 76 Palmero P, Fornabaio M, Montanaro L. et al. Towards long lasting zirconia-based composites for dental implants. Part I: Innovative synthesis, microstructural characterization and in vitro stability. Biomaterials 2015; 50: 38-46 doi:10.1016/j.biomaterials.2015.01.018