Subscribe to RSS
DOI: 10.1055/a-0653-6214
Aktuelles in der Neonatologie
Publication History
Publication Date:
11 November 2019 (online)
Der Beitrag stellt wichtige Aspekte der Entwicklung in der Neonatologie während der vergangenen 5 Jahre dar und skizziert, welche Änderungen sich für die medizinische Versorgung Frühgeborener und kranker Neugeborener ergeben.
-
In der vergangenen Dekade hat sich der Versorgungsansatz der Erstversorgung reif- und frühgeborener Neugeborener drastisch verändert. International wird nun die v. a. Unterstützung physiologischer Umstellungsvorgänge des Neugeborenen propagiert. Eine stark interventionell geprägte Erstversorgung im Sinne einer Reanimation wurde abgelöst durch die sanfte Unterstützung der postnatalen Anpassung, mit verzögerter Abnabelung, schonender Atemunterstützung, kontrolliertem Temperaturmanagement und Stärkung eines frühzeitigen Bindungsaufbaus.
-
Die auf politischer Ebene initiierte Zentralisierung der Versorgung von Müttern mit drohender Risikogeburt sowie die postnatale Versorgung von kindlichen Risikokollektiven haben zu einer Verringerung von Mortalität und Morbidität und einer Reduktion von chronisch kranken Kindern geführt.
-
Verbesserungen der apparativen und medikamentösen Möglichkeiten für die Versorgung von kranken Früh- und Reifgeborenen ermöglichen heute die erfolgreiche Therapie vieler vormals mit schlechter Prognose behafteter perinataler Ereignisse, wie z. B. der perinatalen Hypoxie, einer frühkindlichen Atemnot oder entwicklungsbedingter Augenhintergrunderkrankungen.
-
Der Teamaspekt in der perinatalen Versorgung und das frühzeitige Einbeziehen der Familien wurden zunehmend wahrgenommen. Spezifische Schulung der Teams in der Geburtshilfe und Neonatologie sowie deren erfolgreiches Zusammenspiel zum Wohle der zu versorgenden Familien sind nun vielerorts Standard, bedürfen aber oftmals noch weiterer Verbesserung.
-
Die Besonderheiten der extrauterinen Umgebung während der Phase der fetalen Organentwicklung des Frühgeborenen werden zunehmend als Ursache der langfristigen Schädigung erkannt. Insbesondere der Einfluss auf die postnatale Reifung des Immunsystems und der endogenen Stammzellen scheint von besonderer Bedeutung zu sein.
-
Die aus dieser Erkenntnis resultierenden regenerativen Therapieansätze für Erkrankungen, die ihren Ursprung in einer gestörten feto-neonatalen Entwicklung haben, zeigen in tierexperimentellen Untersuchungen vielversprechende Ergebnisse. Diese positiven Ergebnisse sind jetzt durch entsprechende klinische Studien zu bestätigen.
-
Literatur
- 1 Rüdiger M, Heinrich L, Arnold K. et al. Impact of birthweight on health-care utilization during early childhood – a birth cohort study. BMC Pediatr 2019; 19: 69
- 2 Rashidian A, Omidvari AH, Vali Y. et al. The effectiveness of regionalization of perinatal care services–a systematic review. Public Health 2014; 128: 872-885
- 3 Neogi SB, Sharma J, Chauhan M. et al. Care of newborn in the community and at home. J Perinatol 2016; 36: S13-S17
- 4 Lasswell SM, Barfield WD, Rochat RW. et al. Perinatal regionalization for very low-birth-weight and very preterm infants: a meta-analysis. JAMA 2010; 304: 992-1000
- 5 Schmitt J, Bieber A, Heinrich L, Küster D, Walther F, Rüdiger M. Neue Volume-Outcome-Ergebnisse in der Perinatalmedizin, In Dormann et al., Hrsg. Qualitätsmonitor 2019. Berlin: MWV Medizinisch Wissenschaftliche Verlagsgesellschaft; 2019: 91-117
- 6 Karalis E, Gissler M, Tapper AM. et al. Effect of hospital size and on-call arrangements on intrapartum and early neonatal mortality among low-risk newborns in Finland. Eur J Obstet Gynecol Reprod Biol 2016; 198: 116-119
- 7 Bhatt S, Alison BJ, Wallace EM. et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol 2013; 591: 2113-2126
- 8 Polglase GR, Blank DA, Barton SK. et al. Physiologically based cord clamping stabilises cardiac output and reduces cerebrovascular injury in asphyxiated near-term lambs. Arch Dis Child Fetal Neonatal Ed 2018; 103: F530-F538
- 9 Dawes GS, Mott JC, Widdicombe JG. The foetal circulation in the lamb. J Physiol 1954; 126: 563-587
- 10 Hooper SB, Polglase GR, Roehr CC. Cardiopulmonary changes with aeration of the newborn lung. Paediatr Respir Rev 2015; 16: 147-150
- 11 Crossley KJ, Allison BJ, Polglase GR. et al. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol 2009; 587: 4695-4704
- 12 Yao AC, Moinian M, Lind J. Distribution of blood between infant and placenta after birth. Lancet 1969; 2: 871-873
- 13 Blank DA, Badurdeen S, Omar F Kamlin C. et al. Baby-directed umbilical cord clamping: A feasibility study. Resuscitation 2018; 131: 1-7
- 14 Rabe H, Diaz-Rossello JL, Duley L. et al. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev 2012; (15) CD003248
- 15 Fogarty M, Osborn DA, Askie L. et al. Delayed vs. early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol 2018; 218: 1-18
- 16 Wyllie J, Bruinenberg J, Roehr CC. et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 2015; 95: 249-263
- 17 Katheria A, Hosono S, El-Naggar W. A new wrinkle: Umbilical cord management (how, when, who). Semin Fetal Neonatal Med 2018; 23: 321-326
- 18 Katheria AC. Umbilical cord milking: a review. Front Pediatr 2018; 6: 335 doi:10.3389/fped.2018.00335
- 19 Blank DA, Polglase GR, Kluckow M. et al. Haemodynamic effects of umbilical cord milking in premature sheep during the neonatal transition. Arch Dis Child Fetal Neonatal Ed 2018; 103: F539-F546
- 20 Katheria AC, Reister F, Hummler H. et al. Premature infants receiving cord milking or delayed cord clamping: a randomized controlled non-inferiority trial (abstract LB 1). Am J Obstet Gynecol 2019; 220 (Suppl) S682
- 21 Sweet DG, Carnielli V, Greisen G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome – 2019 Update. Neonatology 2019; 11: 115: 432–451
- 22 Finer NN, Rich W. Neonatal resuscitation: toward improved performance. Resuscitation 2002; 53: 47-51
- 23 Markestad T, Kaaresen PI, Rønnestad A et al.; Norwegian Extreme Prematurity Study Group. Early death, morbidity, and need of treatment among extremely premature infants. Pediatrics 2005; 115: 1289-1298
- 24 Balakrishnan M, Falk-Smith N, Detman LA. et al. Promoting teamwork may improve infant care processes during delivery room management: Florida perinatal quality collaborativeʼs approach. J Perinatol 2017; 37: 886-892
- 25 Yamada NK, Kamlin COF, Halamek LP. Optimal human and system performance during neonatal resuscitation. Semin Fetal Neonatal Med 2018; 23: 306-311
- 26 Finer N, Rich W. Neonatal resuscitation for the preterm infant: evidence versus practice. J Perinatol 2010; 30 Suppl: S57-S66
- 27 Sawyer T, Stavroudis TA, Ades A. et al. Organization of Neonatal-Perinatal Training Program Directors Task Force on Simulation. Simulation in Neonatal-Perinatal Medicine Fellowship Programs. Am J Perinatol 2019; DOI: 10.1055/s-0039-1693465.
- 28 Sawyer T, Lee HC, Aziz K. Anticipation and preparation for every delivery room resuscitation. Semin Fetal Neonatal Med 2018; 23: 312-320
- 29 Ades A, Lee HC. Update on simulation for the Neonatal Resuscitation Program. Semin Perinatol 2016; 40: 447-454
- 30 Sawyer T, Loren D, Halamek LP. Post-event debriefings during neonatal care: why are we not doing them, and how can we start?. J Perinatol 2016; 36: 415-419
- 31 Bennett SC, Finer N, Halamek LP. et al. Implementing Delivery Room Checklists and Communication Standards in a Multi-Neonatal ICU Quality Improvement Collaborative. Jt Comm J Qual Patient Saf 2016; 42: 369-376
- 32 Wagner M, Heimberg E, Mileder LP. et al. Status quo in pediatric and neonatal simulation in four European regions: The DACHS survey. Simul Healthcare 2018; 13: 247-252
- 33 Matterson HH, Szyld D, Green BR. et al. Neonatal resuscitation experience curves: simulation based mastery learning booster sessions and skill decay patterns among pediatric residents. J Perinat Med 2018; 46: 934-941
- 34 Patel J, Posencheg M, Ades A. Proficiency and retention of neonatal resuscitation skills by pediatric residents. Pediatrics 2012; 130: 515-521
- 35 Kelm M, Dold SK, Hartung J. et al. Manual neonatal ventilation training: a respiratory function monitor helps to reduce peak inspiratory pressures and tidal volumes during resuscitation. J Perinat Med 2012; 40: 583-586
- 36 Roehr CC, Kelm M, Proquitté H. et al. Equipment and operator training denote manual ventilation performance in neonatal resuscitation. Am J Perinatol 2010; 27: 753-758
- 37 Schilleman K, Witlox RS, van Vonderen JJ. et al. Auditing documentation on delivery room management using video and physiological recordings. Arch Dis Child Fetal Neonatal Ed 2014; 99: F485-F490
- 38 Carbine DN, Finer NN, Knodel E. et al. Video recording as a means of evaluating neonatal resuscitation performance. Pediatrics 2000; 106: 654-658
- 39 OʼDonnell CP, Kamlin CO, Davis PG. et al. Ethical and legal aspects of video recording neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed 2008; 93: F82-F84
- 40 Konstantelos D, Ifflaender S, Dinger J. et al. Suctioning habits in the delivery room and the influence on postnatal adaptation – a video analysis. J Perinat Med 2015; 43: 777
- 41 Sawyer T, Sierocka-Castaneda A, Chan D. et al. The effectiveness of video-assisted debriefing versus oral debriefing alone at improving neonatal resuscitation performance: a randomized trial. Simul Healthcare 2012; 7: 213-221
- 42 Deindl P, Schwindt J, Berger A. et al. An instructional video enhanced bag-mask ventilation quality during simulated newborn resuscitation. Acta Paediatr 2015; 104: e20-e26
- 43 den Boer MC, Houtlosser M, Foglia EE. et al. Benefits of recording and reviewing neonatal resuscitation: the providersʼ perspective. Arch Dis Child Fetal Neonatal Ed 2019; 104: F528-F534 doi:10.1136/archdischild-2018-315648
- 44 den Boer MC, Houtlosser M, van Zanten HA. et al. Ethical dilemmas of recording and reviewing neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed 2018; 103: F280-F284
- 45 Murphy MC, OʼDonnell CPF, McCarthy LK. Attitudes of staff members towards video recording in the delivery room. Arch Dis Child Fetal Neonatal Ed 2018; 103: F85-F86
- 46 McCarthy LK, Morley CJ, Davis PG. et al. Timing of interventions in the delivery room: does reality compare with neonatal resuscitation guidelines?. J Pediatr 2013; 163: 1553-1557
- 47 Rüdiger M. Resuscitating neonates: 65 years after Virginia Apgar. BMJ Paediatr Open 2017; 1: e000195
- 48 Dalili H, Sheikh M, Hardani AK. et al. Comparison of the Combined versus Conventional Apgar Scores in Predicting Adverse Neonatal Outcomes. PLoS One 2016; 11: e0149464
- 49 Rüdiger M, Braun N, Aranda J. et al. TEST-Apgar Study-Group. Neonatal assessment in the delivery room – Trial to Evaluate a Specified Type of Apgar (TEST-Apgar). BMC Pediatr 2015; 15: 18
- 50 Mense L, Seipolt B, Birdir C. et al. Erstversorgung extrem unreifer Frühgeborener. Neonatol Scan 2018; 7: 273-286
- 51 Rozance PJ, Hay WW. Describing hypoglycemia – Definition or operational threshold?. Early Human Dev 2010; 86: 275-280
- 52 Weston PJ, Harris DL, Battin M. et al. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. Cochrane Database Syst Rev 2016; (05) CD011027
- 53 Glasgow MJ, Harding JE, Edlin R. Children with Hypoglycemia and Their Later Development (CHYLD) Study Team. Cost Analysis of Treating Neonatal Hypoglycemia with Dextrose Gel. J Pediatr 2018; 198: 151-155.e1
- 54 Rivero-Arias O, Eddama O, Azzopardi D. et al. Hypothermia for perinatal asphyxia: trial-based resource use and costs at 6–7 years. Arch Dis Child Fetal Neonatal Ed 2019; 104: F285-F292
- 55 Campbell H, Eddama O, Azzopardi D. et al. Hypothermia for perinatal asphyxia: trial-based quality of life at 6–7 years. Arch Dis Child 2018; 103: 654-659
- 56 Kalteren WS, Ter Horst HJ, den Heijer AE. et al. Perinatal Anemia is Associated with Neonatal and Neurodevelopmental Outcomes in Infants with Moderate to Severe Perinatal Asphyxia. Neonatology 2018; 114: 315-322
- 57 De Haan TR, Langeslag J, van der Lee JH. et al. A systematic review comparing neurodevelopmental outcome in term infants with hypoxic and vascular brain injury with and without seizures. BMC Pediatr 2018; 18: 147
- 58 Jia W, Lei X, Dong W. et al. Benefits of starting hypothermia treatment within 6 h vs. 6-12 h in newborns with moderate neonatal hypoxic-ischemic encephalopathy. BMC Pediatr 2018; 18: 50
- 59 Laptook AR, Shankaran S, Tyson JE. et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Effect of Therapeutic Hypothermia Initiated After 6 Hours of Age on Death or Disability Among Newborns With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial. JAMA 2017; 318: 1550-1560
- 60 Shankaran S, Laptook AR, Pappas A. et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA 2014; 312: 2629-2639
- 61 Herrera TI, Edwards L, Malcolm WF. et al. Outcomes of preterm infants treated with hypothermia for hypoxic-ischemic encephalopathy. Early Hum Dev 2018; 125: 1-7
- 62 Rogers EE, Bonifacio SL, Glass HC. et al. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr Neurol 2014; 51: 657-662
- 63 Razak A, Hussain A. Erythropoietin in perinatal hypoxic-ischemic encephalopathy: a systematic review and meta-analysis. J Perinat Med 2019; 47: 478-489
- 64 Dingley J, Tooley J, Liu X. et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics 2014; 133: 809-818
- 65 Hobbs C, Thoresen M, Tucker A. et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008; 39: 1307-1313
- 66 Azzopardi D, Robertson NJ, Bainbridge A. et al. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol 2016; 15: 145-153
- 67 Rüegger CM, Davis PG, Cheong JL. Xenon as an adjuvant to therapeutic hypothermia in near-term and term newborns with hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev 2018; (08) CD012753
- 68 Horbar JD, Edwards EM, Greenberg LT. et al. Variation in Performance of Neonatal Intensive Care Units in the United States. JAMA Pediatr 2017; 171: e164396
- 69 Doyle LW, Carse E, Adams AM. et al. Victorian Infant Collaborative Study Group. Ventilation in extremely preterm infants and respiratory function at 8 years. N Engl J Med 2017; 377: 329-337
- 70 Isayama T, Lee SK, Yang J. et al. Canadian Neonatal Network and Canadian Neonatal Follow-Up Network Investigators. Revisiting the definition of bronchopulmonary dysplasia: effect of changing panoply of respiratory support for preterm neonates. JAMA Pediatr 2017; 171: 271-279
- 71 Bassler D, Shinwell ES, Hallman M. et al. Neonatal European Study of Inhaled Steroids Trial Group. Long-Term Effects of Inhaled Budesonide for Bronchopulmonary Dysplasia. N Engl J Med 2018; 378: 148-157
- 72 Yeh TF, Chen CM, Wu SY. et al. Intratracheal Administration of Budesonide/Surfactant to Prevent Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2016; 193: 86-95
- 73 Baud O, Trousson C, Biran V. et al. PREMILOC Trial Group. Association between early low-dose hydrocortisone therapy in extremely preterm neonates and neurodevelopmental outcomes at 2 years of age. JAMA 2017; 317: 1329-1337
- 74 Venkataraman R, Kamaluddeen M, Hasan SU. et al. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants: a systematic review and meta-analysis. Pediatr Pulmonol 2017; 52: 968-975
- 75 Shaffer ML, Baud O, Lacaze-Masmonteil T. et al. Effect of prophylaxis for early adrenal insufficiency using low-dose hHydrocortisone in very preterm infants: an individual patient data meta-analysis. J Pediatr 2019; 207: 136-142.e5 doi:10.1016/j.jpeds.2018.10.004
- 76 Onland W, Cools F, Kroon A. et al. STOP-BPD Study Group. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation: a randomized clinical trial. JAMA 2019; 321: 354-363
- 77 Mintz-Hittner HA, Kennedy KA, Chuang AZ. BEAT-ROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 2011; 364: 603-615
- 78 Stahl A, Krohne TU, Eter N. et al. Comparing Alternative Ranibizumab Dosages for Safety and Efficacy in Retinopathy of Prematurity (CARE-ROP) Study Group. Comparing alternative ranibizumab dosages for safety and efficacy in retinopathy of prematurity: a randomized clinical trial. JAMA Pediatr 2018; 172: 278-286
- 79 Welsford M, Nishiyama C, Shortt C. et al. International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Initial oxygen use for preterm newborn resuscitation: a systematic review with meta-analysis. Pediatrics 2019; 143: pii:e20181828 doi:10.1542/peds.2018-1828
- 80 Welsford M, Nishiyama C, Shortt C. et al. International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Room air for initiating term newborn resuscitation: a systematic review with meta-analysis. Pediatrics 2019; 143: pii:e20181825 doi:10.1542/peds.2018-1825
- 81 Askie LM, Darlow BA, Finer N. et al. Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA 2018; 319: 2190-2201
- 82 Klingenberg C, Wheeler KI, McCallion N. et al. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev 2017; (10) CD003666
- 83 Fuchs H, Schilleman K, Hummler HD. et al. Techniques and devices to improve noninvasive ventilation in the delivery room. Neoreviews 2012; 13: e353
- 84 OʼDonnell CP, Kamlin CO, Davis PG. et al. Crying and breathing by extremely preterm infants immediately after birth. J Pediatr 2010; 156: 846-847
- 85 Björklund LJ, Vilstrup CT, Larsson A. et al. Changes in lung volume and static expiratory pressure-volume diagram after surfactant rescue treatment of neonates with established respiratory distress syndrome. Am J Respir Crit Care Med 1996; 154: 918-923
- 86 Dawson JA, Gerber A, Kamlin CO. et al. Providing PEEP during neonatal resuscitation: which device is best?. J Paediatr Child Health 2011; 47: 698-703
- 87 Roehr CC, Kelm M, Fischer HS. et al. Manual ventilation devices in neonatal resuscitation: tidal volume and positive pressure-provision. Resuscitation 2010; 81: 202-205
- 88 Committee on Fetus and Newborn, American Academy of Pediatrics. Respiratory support in preterm infants at birth. Pediatrics 2014; 133: 171-174
- 89 Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics 2013; 132: e1351-e1360
- 90 Lindner W, Högel J, Pohlandt F. Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube. Acta Paediatr 2005; 94: 303-309
- 91 te Pas AB, Siew M, Wallace MJ. et al. Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res 2009; 65: 537-541
- 92 Schmölzer GM. Chest compressions during sustained inflation during cardiopulmonary resuscitation in newborn infants translating evidence from animal studies to the bedside. JACC Basic Transl Sci 2019; 4: 116-121
- 93 Kirpalani H, Ratcliffe SJ, Keszler M. et al. SAIL Site Investigators. Effect of Sustained Inflations vs. Intermittent Positive Pressure Ventilation on Bronchopulmonary Dysplasia or Death Among Extremely Preterm Infants: The SAIL Randomized Clinical Trial. JAMA 2019; 321: 1165-1175
- 94 Roehr CC, Yoder BA, Davis PG. et al. Evidence support and guidelines for using heated, humidified, high-flow nasal cannulae in neonatology: Oxford Nasal High-Flow Therapy Meeting, 2015. Clin Perinatol 2016; 43: 693-705
- 95 Zivanovic S, Scrivens A, Panza R. et al. Nasal high-flow therapy as primary respiratory support for preterm infants without the need for rescue with nasal continuous positive airway pressure. Neonatology 2019; 115: 175-181
- 96 Roberts CT, Owen LS, Manley BJ. et al. HIPSTER Trial Investigators. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med 2016; 375: 1142-1151
- 97 Meyer MP, Owen LS, Te Pas AB. Use of heated humidified gases for early stabilization of preterm infants: a meta-analysis. Front Pediatr 2018; 6: 319
- 98 Lemyre B, Laughon M, Bose C. et al. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev 2016; (12) CD005384
- 99 Gibu CK, Cheng PY, Ward RJ. et al. Feasibility and physiological effects of noninvasive neurally adjusted ventilatory assist in preterm infants. Pediatr Res 2017; 82: 650-657
- 100 Reynolds PR, Miller TL, Volakis LI. et al. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch Dis Child Fetal Neonatal Ed 2019; 104: F366-F371
- 101 Steinhardt A, Hinner P, Kühn T. et al. Influences of a dedicated parental training program on parent-child interaction in preterm infants. Early Hum Dev 2015; 91: 205-210
- 102 Reichert J, Sommerfeld M. OPS-Forum 9-502. Präventive familienzentrierte multimodale Komplexbehandlung bei Frühgeborenen, Neugeborenen und Säuglingen. Im Internet: https://www.uniklinikum-dresden.de/de/das-klinikum/kliniken-polikliniken-institute/kik/patienteninfo/familienetz/ops Stand: 11.09.2019
- 103 Möbius MA, Rüdiger M. Mesenchymal stromal cells in the development and therapy of bronchopulmonary dysplasia. Mol Cell Pediatr 2016; 3: 18
- 104 Möbius MA, Freund D, Vadivel A. et al. Oxygen disrupts human fetal lung mesenchymal cells: implications for bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2019; 60: 592-600 doi:10.1165/rcmb.2018-0358OC
- 105 Partridge EA, Davey MG, Hornick MA. et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017; 8: 15112