Neurologie up2date 2018; 1(01): 27-44
DOI: 10.1055/a-0657-7643
Zerebrovaskuläre Erkrankungen
Georg Thieme Verlag KG Stuttgart · New York

Blutdruckmanagement beim akuten Schlaganfall (Ischämie, Blutung, SAB)

Joji B. Kuramatsu
,
Hagen B. Huttner
,
Stefan Schwab
Further Information

Publication History

Publication Date:
04 October 2018 (online)

Ziel dieses Übersichtsartikels ist es, die aktuelle Datenlage zur Blutdruckbehandlung im Rahmen eines akuten Schlaganfalls – ischämischer Schlaganfall, intrazerebrale Blutung und Subarachnoidalblutung – darzustellen sowie Herausforderungen und Probleme zu diskutieren und mögliche Therapiestrategien aufzuzeigen.

Kernaussagen
  • Im Allgemeinen gilt es, bei Schlaganfallpatienten eine Hypotension (systolischer Blutdruck < 120 mmHg) und eine hohe Blutdruckvariabilität zu vermeiden.

  • Die Qualität der Evidenz ist überwiegend niedrig, es besteht ein hoher Forschungsbedarf, um optimale Blutdruckintervalle und vorteilhafte Medikamente zu identifizieren.

  • Grundsätzlich sollte der systolische Blutdruck zwischen 120 mmHg und 180 mmHg liegen, aber je nach individuellen Patientencharakteristika und Therapie sollte eine spezifischere Anpassung erfolgen:

    • Patienten mit ischämischem Schlaganfall ohne Indikation für revaskularisierende Therapien:

      • systolische Blutdrucksenkung um 15% bei Werten über 220 mmHg empfohlen;

      • eine moderate Blutdrucksenkung frühzeitig (< 6 Stunden) nach Ereignis ist möglicherweise vorteilhaft.

    • Patienten mit ischämischem Schlaganfall und einer Indikation für eine intravenöse Lysetherapie:

      • Blutdrucksenkung vor Beginn der Lysetherapie, Ziel < 185 mmHg (systolisch),

      • anschließend < 180 mmHg.

    • Patienten mit ischämischem Schlaganfall und Indikation für eine mechanische Rekanalisation:

      • systolische Blutdruckwerte über 185 mmHg vermeiden, Ziel < 160 mmHg;

      • nach erfolgreicher Rekanalisation (TICI 2b+3) ohne Stenosen systolisches Blutdruckziel zwischen 120 mmHg und 140 mmHg.

    • Patienten mit intrazerebraler Blutung:

      • aggressive Blutdrucksenkung auf einen systolischen Zielwert von 140 mmHg ist sicher und mit einer reduzierten Nachblutungsrate assoziiert.

      • Patienten mit aneurysmatischer subarachnoidaler Blutung:

        • vor Versorgung des Aneurysmas systolischer Blutdruck < 160 mmHg;

        • nach Versorgung des Aneurysmas:
          ohne Vasospasmen Normotension anstreben,
          bei manifesten Vasospasmen je nach Ausprägung konsekutive Erhöhung des MAD (> 100 mmHg),
          bei schweren Vasospasmen ggf. auch deutlich höher.

 
  • Literatur

  • 1 MacMahon S, Peto R, Cutler J. et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 1990; 335: 765-774
  • 2 Kearney PM, Whelton M, Reynolds K. et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217-223
  • 3 Britton M, Carlsson A, de Faire U. Blood pressure course in patients with acute stroke and matched controls. Stroke 1986; 17: 861-864
  • 4 Willmot M, Leonardi-Bee J, Bath PM. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension 2004; 43: 18-24
  • 5 Leonardi-Bee J, Bath PM, Phillips SJ. et al. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke 2002; 33: 1315-1320
  • 6 Bangalore S, Schwamm L, Smith EE. et al. Blood pressure and in-hospital outcomes in patients presenting with ischaemic stroke. Eur Heart J 2017; 38: 2827-2835
  • 7 Sare GM, Ali M, Shuaib A. et al. Relationship between hyperacute blood pressure and outcome after ischemic stroke: data from the VISTA collaboration. Stroke 2009; 40: 2098-2103
  • 8 Geeganage C, Tracy M, England T. et al. Relationship between baseline blood pressure parameters (including mean pressure, pulse pressure, and variability) and early outcome after stroke: data from the Tinzaparin in Acute Ischaemic Stroke Trial (TAIST). Stroke 2011; 42: 491-493
  • 9 Manning L, Hirakawa Y, Arima H. et al. Blood pressure variability and outcome after acute intracerebral haemorrhage: a post-hoc analysis of INTERACT2, a randomised controlled trial. Lancet Neurol 2014; 13: 364-373
  • 10 Qureshi AI. Acute hypertensive response in patients with stroke: pathophysiology and management. Circulation 2008; 118: 176-187
  • 11 Chamorro A, Amaro S, Vargas M. et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci 2007; 252: 29-35
  • 12 Xiong L, Liu X, Shang T. et al. Impaired cerebral autoregulation: measurement and application to stroke. J Neurol Neurosurg Psychiat 2017; 88: 520-531
  • 13 Regenhardt RW, Das AS, Stapleton CJ. et al. Blood pressure and penumbral sustenance in stroke from large vessel occlusion. Frontiers Neurol 2017; 8: 317
  • 14 Wang A, Ortega-Gutierrez S, Petersen NH. Autoregulation in the Neuro ICU. Curr Treatment Options Neurol 2018; 20: 20
  • 15 Hamner JW, Tan CO. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke 2014; 45: 1771-1777
  • 16 Tikhonoff V, Zhang H, Richart T. et al. Blood pressure as a prognostic factor after acute stroke. Lancet Neurol 2009; 8: 938-948
  • 17 Wahlgren NG, Macmahon DG, Dekeyser J. et al. Intravenous Nimodipine West-European Stroke Trial (Inwest) of nimodipine in the treatment of acute ischemic stroke. Cerebrovasc Dis 1994; 4: 204-210
  • 18 Horn J, de Haan RJ, Vermeulen M. et al. Very early nimodipine use in stroke (VENUS) – A randomized, double-blind, placebo-controlled trial. Stroke 2001; 32: 461-465
  • 19 He J, Zhang Y, Xu T. et al. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. JAMA 2014; 311: 479-489
  • 20 Xu T, Zhang Y, Bu X. et al. Blood pressure reduction in acute ischemic stroke according to time to treatment: a subgroup analysis of the China Antihypertensive Trial in Acute Ischemic Stroke trial. Curr Hypertens 2017; 35: 1244-1251
  • 21 Sandset EC, Bath PM, Boysen G. et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet 2011; 377: 741-750
  • 22 Jusufovic M, Sandset EC, Bath PM. et al. Early blood pressure lowering treatment in acute stroke. Ordinal analysis of vascular events in the Scandinavian Candesartan Acute Stroke Trial (SCAST). Curr Hypertens 2016; 34: 1594-1598
  • 23 Krishnan K, Scutt P, Woodhouse L. et al. Glyceryl trinitrate for acute intracerebral hemorrhage: results from the Efficacy of Nitric Oxide in Stroke (ENOS) Trial, a subgroup analysis. Stroke 2016; 47: 44-52
  • 24 Woodhouse L, Scutt P, Krishnan K. et al. Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke: subgroup analysis of the Efficacy of Nitric Oxide in Stroke (ENOS) trial. Stroke 2015; 46: 3194-3201
  • 25 Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev 2014; (10) CD000039 DOI: 10.1002/14651858.CD000039.pub3.
  • 26 Lee M, Ovbiagele B, Hong KS. et al. Effect of Blood pressure lowering in early ischemic stroke: meta-analysis. Stroke 2015; 46: 1883-1889
  • 27 Powers WJ, Rabinstein AA, Ackerson T. et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018; 49: e46-e110
  • 28 Martins AI, Sargento-Freitas J, Silva F. et al. Recanalization modulates association between blood pressure and functional outcome in acute ischemic stroke. Stroke 2016; 47: 1571-1576
  • 29 Vemmos KN, Tsivgoulis G, Spengos K. et al. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. J Intern Med 2004; 255: 257-265
  • 30 Brott T, Lu M, Kothari R. et al. Hypertension and its treatment in the NINDS rt-PA Stroke Trial. Stroke 1998; 29: 1504-1509
  • 31 Ahmed N, Wahlgren N, Brainin M. et al. Relationship of blood pressure, antihypertensive therapy, and outcome in ischemic stroke treated with intravenous thrombolysis: retrospective analysis from Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register (SITS-ISTR). Stroke 2009; 40: 2442-2449
  • 32 Wu W, Huo X, Zhao X. et al. Relationship between blood pressure and outcomes in acute ischemic stroke patients administered lytic medication in the TIMS-China Study. PloS One 2016; 11: e0144260
  • 33 Berge E, Cohen G, Lindley RI. et al. Effects of blood pressure and blood pressure-lowering treatment during the first 24 hours among patients in the third international stroke trial of thrombolytic treatment for acute ischemic stroke. Stroke 2015; 46: 3362-3369
  • 34 Dirks M, Zonneveld TP, Dippel DW. et al. Elevated pretreatment blood pressure and IV thrombolysis in stroke. Neurology 2015; 84: 1419-1425
  • 35 Haverkamp C, Ganslandt T, Horki P. et al. Regional Differences in Thrombectomy Rates : Secondary use of Billing Codes in the MIRACUM (Medical Informatics for Research and Care in University Medicine) Consortium. Clin Neuroradiol 2018; 28: 225-234
  • 36 Goyal M, Menon BK, van Zwam WH. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387: 1723-1731
  • 37 Maier B, Gory B, Taylor G. et al. Mortality and disability according to baseline blood pressure in acute ischemic stroke patients treated by thrombectomy: a collaborative pooled analysis. J Am Heart Assoc 2017; 6: e006484
  • 38 Goyal N, Tsivgoulis G, Pandhi A. et al. Blood pressure levels post mechanical thrombectomy and outcomes in non-recanalized large vessel occlusion patients. J Neurointerv Surg 2018; 10: 925-931
  • 39 Goyal N, Tsivgoulis G, Pandhi A. et al. Blood pressure levels post mechanical thrombectomy and outcomes in large vessel occlusion strokes. Neurology 2017; 89: 540-547
  • 40 Abou-Chebl A, Yeatts SD, Yan B. et al. Impact of general anesthesia on safety and outcomes in the endovascular arm of Interventional Management of Stroke (IMS) III Trial. Stroke 2015; 46: 2142-2148
  • 41 Berkhemer OA, van den Berg LA, Fransen PS. et al. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. Neurology 2016; 87: 656-664
  • 42 Schonenberger S, Uhlmann L, Hacke W. et al. Effect of conscious sedation vs. general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. JAMA 2016; 316: 1986-1996
  • 43 Schonenberger S, Uhlmann L, Ungerer M. et al. Association of blood pressure with short- and long-term functional outcome after stroke thrombectomy: post hoc analysis of the SIESTA Trial. Stroke 2018; 49: 1451-1456
  • 44 Simonsen CZ, Yoo AJ, Sorensen LH. et al. Effect of general anesthesia and conscious sedation during endovascular therapy on infarct growth and clinical outcomes in acute ischemic stroke: a randomized clinical trial. JAMA Neurol 2018; 75: 470-477
  • 45 Simonsen CZ, Sorensen LH, Juul N. et al. Anesthetic strategy during endovascular therapy: General anesthesia or conscious sedation? (GOLIATH – General or Local Anesthesia in Intra Arterial Therapy) A single-center randomized trial. Int J Stroke 2016; 11: 1045-1052
  • 46 Lowhagen Henden P, Rentzos A, Karlsson JE. et al. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: The AnStroke Trial (Anesthesia During Stroke). Stroke 2017; 48: 1601-1607
  • 47 Jagani M, Brinjikji W, Rabinstein AA. et al. Hemodynamics during anesthesia for intra-arterial therapy of acute ischemic stroke. J Neurointerv Surg 2016; 8: 883-888
  • 48 Treurniet KM, Berkhemer OA, Immink RV. et al. A decrease in blood pressure is associated with unfavorable outcome in patients undergoing thrombectomy under general anesthesia. J Neurointerv Surg 2018; 10: 107-111
  • 49 Mistry EA, Mistry AM, Nakawah MO. et al. Systolic blood pressure within 24 hours after thrombectomy for acute ischemic stroke correlates with outcome. J Am Heart Assoc 2017; 6: pii:e006167
  • 50 Mulder M, Ergezen S, Lingsma HF. et al. Baseline blood pressure effect on the benefit and safety of intra-arterial treatment in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands). Stroke 2017; 48: 1869-1876
  • 51 Maier B, Gory B, Taylor G. et al. Mortality and disability according to baseline blood pressure in acute ischemic stroke patients treated by thrombectomy: a collaborative pooled analysis. J Am Heart Assoc 2017; 6: e006484
  • 52 Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet 2009; 373: 1632-1644
  • 53 Krishnamurthi RV, Feigin VL, Forouzanfar MH. et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Global Health 2013; 1: e259-e281
  • 54 Flaherty ML, Kissela B, Woo D. et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology 2007; 68: 116-121
  • 55 Liotta EM, Prabhakaran S. Warfarin-associated Intracerebral hemorrhage is increasing in prevalence in the United States. J Stroke Cerebrovasc 2013; 22: 1151-1155
  • 56 Morotti A, Brouwers HB, Romero JM. et al. Intensive blood pressure reduction and spot sign in intracerebral hemorrhage: a secondary analysis of a randomized clinical trial. JAMA Neurol 2017; 74: 950-960
  • 57 Morotti A, Dowlatshahi D, Boulouis G. et al. Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: The BAT score. Stroke 2018; 49: 1163-1169
  • 58 Wang X, Arima H, Al-Shahi Salman R. et al. Clinical prediction algorithm (BRAIN) to determine risk of hematoma growth in acute intracerebral hemorrhage. Stroke 2015; 46: 376-381
  • 59 Anderson CS, Heeley E, Huang Y. et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. New Engl J Med 2013; 368: 2355-2365
  • 60 Qureshi AI, Palesch YY, Barsan WG. et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. New Engl J Med 2016; 375: 1033-1043
  • 61 Boulouis G, Morotti A, Goldstein JN. et al. Intensive blood pressure lowering in patients with acute intracerebral haemorrhage: clinical outcomes and haemorrhage expansion. Systematic review and meta-analysis of randomised trials. J Neurol Neurosurg Psychiat 2017; 88: 339-345
  • 62 Tsivgoulis G, Katsanos AH, Butcher KS. et al. Intensive blood pressure reduction in acute intracerebral hemorrhage: a meta-analysis. Neurology 2014; 83: 1523-1529
  • 63 Arima H, Heeley E, Delcourt C. et al. Optimal achieved blood pressure in acute intracerebral hemorrhage: INTERACT2. Neurology 2015; 84: 464-471
  • 64 Kuramatsu JB, Gerner ST, Schellinger PD. et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA 2015; 313: 824-836
  • 65 Kuramatsu JB, Sembill JA, Gerner ST. et al. Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves. Eur Heart J 2018; 39: 1709-1723
  • 66 Gerner ST, Kuramatsu JB, Sembill JA. et al. Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol 2018; 83: 186-196
  • 67 Rinkel GJE, Algra A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol 2011; 10: 349-356
  • 68 Lawton MT, Vates GE. Subarachnoid hemorrhage. New Engl J Med 2017; 377: 257-266
  • 69 Lovelock CE, Rinkel GJE, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: Population-based study and systematic review. Neurology 2010; 74: 1494-1501
  • 70 Nieuwkamp DJ, Setz LE, Algra A. et al. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 2009; 8: 635-642
  • 71 Vergouwen MD, Jong-Tjien-Fa AV, Algra A. et al. Time trends in causes of death after aneurysmal subarachnoid hemorrhage: A hospital-based study. Neurology 2016; 86: 59-63
  • 72 Grasso G, Alafaci C, Macdonald RL. Management of aneurysmal subarachnoid hemorrhage: State of the art and future perspectives. Surg Neurol Int 2017; 8: 11
  • 73 Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nature Rev Neurol 2014; 10: 44-58
  • 74 Tang C, Zhang TS, Zhou LF. Risk factors for rebleeding of aneurysmal subarachnoid hemorrhage: a meta-analysis. PloS One 2014; 9: e99536
  • 75 Lin QS, Ping C, Lin YX. et al. Systolic blood pressure variability is a novel risk factor for rebleeding in acute subarachnoid hemorrhage: a case-control study. Medicine 2016; 95: e3028
  • 76 Oheda M, Inamasu J, Moriya S. et al. Early rebleeding in patients with subarachnoid haemorrhage under intensive blood pressure management. J Clin Neurosci 2015; 22: 1338-1342
  • 77 Cai K, Zhang Y, Shen L. et al. Characteristics of blood pressure profiles after endovascular coiling as predictors of clinical outcome in poor-grade aneurysmal subarachnoid hemorrhage. World Neurosurg 2017; 104: 459-466
  • 78 Gathier CS, Dankbaar JW, van der Jagt M. et al. Effects of induced hypertension on cerebral perfusion in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke 2015; 46: 3277-3281
  • 79 Gathier CS, van den Bergh WM, van der Jagt M. et al. Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke 2018; 49: 76-83
  • 80 Lisk DR, Grotta JC, Lamki LM. et al. Should hypertension be treated after acute stroke? A randomized controlled trial using single photon emission computed tomography. Arch Neurol 1993; 50: 855-862
  • 81 Yang W, Zhou YJ, Fu Y. et al. A multicenter, randomized, trial comparing urapidil and nitroglycerin in multifactor heart failure in the elderly. Am J Med Sci 2015; 350: 109-115
  • 82 Potter JF, Robinson TG, Ford GA. et al. Controlling hypertension and hypotension immediately post-stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial. Lancet Neurol 2009; 8: 48-56
  • 83 Eveson DJ, Robinson TG, Potter JF. Lisinopril for the treatment of hypertension within the first 24 hours of acute ischemic stroke and follow-up. Am J Hypertens 2007; 20: 270-277
  • 84 Dyker AG, Grosset DG, Lees K. Perindopril reduces blood pressure but not cerebral blood flow in patients with recent cerebral ischemic stroke. Stroke 1997; 28: 580-583
  • 85 Schrader J, Luders S, Kulschewski A. et al. The ACCESS study – Evaluation of acute candesartan cilexetil therapy in stroke survivors. Stroke 2003; 34: 1699-1703
  • 86 Bath PMW, Martin RH, Palesch Y. et al. Effect of Telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke. A PRoFESS Subgroup Analysis. Stroke 2009; 40: 3541-3546
  • 87 Oh MS, Yu KH, Hong KS. et al. Modest blood pressure reduction with valsartan in acute ischemic stroke: a prospective, randomized, open-label, blinded-end-point trial. Int J Stroke 2015; 10: 745-751
  • 88 Barer DH, Cruickshank JM, Ebrahim SB. et al. Low dose beta blockade in acute stroke ("BEST" trial): an evaluation. Br Med J (Clin Res Ed) 1988; 296: 737-741
  • 89 Horn J, Limburg M. Calcium antagonists for ischemic stroke: a systematic review. Stroke 2001; 32: 570-576
  • 90 Rashid P, Weaver C, Leonardi-Bee J. et al. The effects of transdermal glyceryl trinitrate, a nitric oxide donor, on blood pressure, cerebral and cardiac hemodynamics, and plasma nitric oxide levels in acute stroke. J Stroke Cerebrovasc Dis 2003; 12: 143-151
  • 91 Willmot M, Ghadami A, Whysall B. et al. Transdermal glyceryl trinitrate lowers blood pressure and maintains cerebral blood flow in recent stroke. Hypertension 2006; 47: 1209-1215
  • 92 Bath PMW, Woodhouse L, Scutt P. et al. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. Lancet 2015; 385: 617-628