Subscribe to RSS
DOI: 10.1055/a-0770-2832
Prenatal Diagnosis and Postnatal Outcome of Fetuses with Pulmonary Atresia and Ventricular Septal Defect
Pränatale Diagnose und postnatales Outcome von Feten mit Pulmonalatresie und VentrikelseptumdefektAbstract
Purpose To assess the intrauterine course, associated conditions and postnatal outcome of fetuses with pulmonary atresia with ventricular septal defect (PAVSD).
Methods All cases of PAVSD diagnosed prenatally over a period of 10 years with a minimum follow-up of 6.5 years were retrospectively collected in 3 tertiary referral centers.
Results 50 cases of PAVSD were diagnosed prenatally. 44.0 % of fetuses had isolated PAVSD, 4.0 % had associated cardiac anomalies, 10.0 % had extra-cardiac anomalies, 38.0 % had chromosomal anomalies, 4.0 % had non-chromosomal syndromes. Among the 32 liveborn children, 56.3 % had reverse flow in the patent arterial duct, 25.0 % had major aortopulmonary collateral arteries (MAPCAs) with ductal agenesis and 18.7 % had a double supply. 17 pregnancies were terminated (34.0 %), there was 1 intrauterine fetal death (2.0 %), 1 neonatal death (2.0 %), and 6 deaths (12.0 %) in infancy. 25 of 30 (83.3 %) liveborn children with an intention to treat were alive at the latest follow-up. The mean follow-up among survivors was 10.0 years (range 6.5–15.1). 56.0 % of infants underwent staged repair, 44.0 % had one-stage complete repair. After exclusion of infants with additional chromosomal or syndromal anomalies, 88.9 % were healthy, and 11.1 % had mild limitations. The presence of MAPCAs did not differ significantly between survivors and non-survivors (p = 0.360), between one-stage or staged repair (p = 0.656) and healthy and impaired infants (p = 0.319).
Conclusion The prognosis in cases without chromosomal or syndromal anomalies is good. MAPCAs did not influence prognosis or postoperative health. The incidence of repeat interventions due to recurrent stenoses is significantly higher after staged compared with single-stage repair.
Zusammenfassung
Ziel Beurteilung des intrauterinen Verlaufs, assoziierter Anomalien und des postnatalen Outcomes von Feten mit Pulmonalatresie mit Ventrikelseptumdefekt (PAVSD).
Methoden Retrospektive Auswertung aller über einen Zeitraum von 10 Jahren in den Universitätsfrauenkliniken Köln und Bonn sowie bei pränatal.de diagnostizierten Feten mit PAVSD und einem postnatalen Follow-Up von mindestens 6,5 Jahren.
Ergebnisse 50 PAVSD wurden pränatal diagnostiziert. 44,0 % der Feten hatten isolierte PAVSD, 4,0 % assoziierte kardiale und 10,0 % extrakardiale Anomalien, 38,0 % hatten chromosomale Anomalien, 4,0 % nicht chromosomale Syndrome. Von den 32 Lebendgeborenen hatten 56,3 % der Kinder einen reversen Fluss über einen offenen Ductus arteriosus, 25,0 % hatten major aortopulmonale Kollateralarterien (MAPCAs) mit Ductusagenesie und 18,7 % hatten einen double supply. 17 (34 %) Schwangerschaften wurden abgebrochen, 1 Fötus (2 %) verstarb intrauterin, 1 Kind (2 %) in der Neonatal-Zeit, 6 Kinder (12 %) im Säuglingsalter. 25 von 30 (83,3 %) Lebendgeborenen mit intention-to-treat lebten beim letzten Follow-Up. Das durchschnittliche Follow-Up unter den Überlebenden betrug 10,0 Jahre (range 6,5–15,1). 56 % der Kinder erhielten eine 2-zeitige Korrektur, 44 % wurden 1-zeitig operiert. Nach Ausschluss der Kinder mit chromosomalen oder syndromalen Anomalien waren 88,9 % der Kinder gesund, 11,1 % waren leicht beeinträchtigt. Die Inzidenz von MAPCAs unterschied sich nicht signifikant zwischen Verstorbenen und Überlebenden (p = 0,360), zwischen 1-zeitig und 2-zeitig operierten (p = 0,656) und zwischen gesunden und beeinträchtigten Kindern (p = 0,319).
Schlussfolgerungen Die Prognose der PAVSD ohne assoziierte chromosomale oder syndromale Anomalien ist gut, die Mehrzahl der Kinder überlebt ohne Einschränkungen. MAPCAs beeinflussen weder die Prognose noch den postoperativen Gesundheitszustand. Lediglich die Inzidenz wiederholter Interventionen durch rekurrierende Stenosen war nach 2-zeitiger operativer Korrektur signifikant häufiger als nach 1-zeitiger Korrektur.
Key words
ventricular septal defect - congenital heart defect - prenatal diagnosis - fetus - pulmonary atresiaPublication History
Received: 15 April 2018
Accepted: 09 October 2018
Article published online:
07 January 2019
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Liao PK, Edwards WD, Julsrud PR. et al. Pulmonary blood supply in patients with pulmonary atresia and ventricular septal defect. J Am Coll Cardiol 1985; 6: 1343-1350
- 2 Pahl E, Fong L, Anderson RH. et al. Fistulous communications between a solitary coronary artery and the pulmonary arteries as the primary source of pulmonary blood supply in tetralogy of fallot with pulmonary valve atresia. Am J Cardiol 1989; 63: 140-143
- 3 Bogers A, Rohmer J, Wolsky S. et al. Coronary Artery Fistula as Source of Pulmonary Circulation in Pulmonary Atresia with Ventricular Septal Defect. The Thoracic and Cardiovascular Surgeon 2008; 38: 30-32
- 4 Hofbeck M, Sunnegårdh JT, Burrows PE. et al. Analysis of survival in patients with pulmonic valve atresia and ventricular septal defect. Am J Cardiol 1991; 67: 737-743
- 5 Amin Z, McElhinney DB, Reddy VM. et al. Coronary to pulmonary artery collaterals in patients with pulmonary atresia and ventricular septal defect. Ann Thorac Surg 2000; 70: 119-123
- 6 Reddy VM, Liddicoat JR, Hanley FL. Midline one-stage complete unifocalization and repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals. J Thorac Cardiovasc Surg 1995; 109: 832-845
- 7 Haworth SG, Macartney FJ. Growth and development of pulmonary circulation in pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries. Br Heart J 1980; 44: 14-24
- 8 Marelli AJ, Mackie AS, Ionescu-Ittu R. et al. Congenital Heart Disease in the General Population: Changing Prevalence and Age Distribution. Circulation 2006; 115: 163-172
- 9 Leonard H, Derrick G, O’Sullivan J. et al. Natural and unnatural history of pulmonary atresia. Heart 2000; 84: 499-503
- 10 Downing JW. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 1985; 121: 31-36
- 11 Hofmann JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890-1900
- 12 Talner NS. Report of the New England Regional Infant Cardiac Program, by Donald C. Fyler, MD. Pediatrics 1980; 65: 375-461
- 13 Vesel S. Prenatally diagnosed pulmonary atresia with ventricular septal defect: echocardiography, genetics, associated anomalies and outcome. Heart 2006; 92: 1501-1505
- 14 Seale AN, Ho SY, Shinebourne EA. et al. Prenatal identification of the pulmonary arterial supply in tetralogy of Fallot with pulmonary atresia. Cardiol Young 2009; 19: 185-191
- 15 Kaguelidou F, Fermont L, Boudjemline Y. et al. Foetal echocardiographic assessment of tetralogy of Fallot and post-natal outcome. Eur Heart J 2008; 29: 1432-1438
- 16 Boudjemline Y, Fermont L, Le Bidois J. et al. Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-year prospective study. J Pediatr 2001; 138: 520-524
- 17 Boudjemline Y, Fermont L, Le BidoisJ. et al. Can we predict 22q11 status of fetuses with tetralogy of Fallot?. Prenat Diagn 2002; 22: 231-234
- 18 Balaguru D, Dilawar M. Pulmonary Atresia with Ventricular Septal Defect: Systematic Review. Vol 8. Medknow Publications 2007; 8: 52-61
- 19 Copel JA, Tan ASA, Kleinman CS. Does a prenatal diagnosis of congenital heart disease alter short-term outcome?. Ultrasound Obstet Gynecol 1997; 10: 237-241
- 20 Miyashita S, Chiba Y. Prenatal Demonstration of Major Aortopulmonary Collateral Arteries with Tetralogy of Fallot and Pulmonary Atresia. Fetal Diagn Ther 2004; 19: 100-105
- 21 Tchervenkov CI, Salasidis G, Cecere R. et al. One-stage midline unifocalization and complete repair in infancy versus multiple-stage unifocalization followed by repair for complex heart disease with major aortopulmonary collaterals. J Thorac Cardiovasc Surg 1997; 114: 727-737
- 22 Reddy VM, McElhinney DB, Amin Z. et al. Early and Intermediate Outcomes After Repair of Pulmonary Atresia With Ventricular Septal Defect and Major Aortopulmonary Collateral Arteries: Experience With 85 Patients. Circulation 2000; 101: 1826-1832
- 23 Reddy VM, Petrossian E, McElhinney DB. et al. One-stage complete unifocalization in infants: When should the ventricular septal defect be closed?. J Thorac Cardiovasc Surg 1997; 113: 858-868
- 24 Gupta A, Odim J, Levi D. et al. Staged repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries: Experience with 104 patients. J Thorac Cardiovasc Surg 2003; 126: 1746-1752
- 25 Carotti A, Di Donato RM, Squitieri C. et al. Total repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals: An integrated approach. J Thorac Cardiovasc Surg 1998; 116: 914-923
- 26 Franklin O, Burch M, Manning N. et al. Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. Heart 2002; 87: 67-69
- 27 Bonnet D, Coltri A, Butera G. et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 1999; 99: 916-918
- 28 Yagel S, Cohen SM, Achiron R. Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound Obstet Gynecol 2001; 17: 367-369
- 29 Carvalho JS, Ho SY, Shinebourne EA. Sequential segmental analysis in complex fetal cardiac abnormalities: a logical approach to diagnosis. Ultrasound Obstet Gynecol 2005; 26: 105-111
- 30 Talner NS. Report of the New England Regional Infant Cardiac Program, by Donald C. Fyler, MD, Pediatrics 1980; 65: 375-461
- 31 Allan LD, Sharland GK, Milburn A. et al. Prospective diagnosis of 1006 consecutive cases of congenital heart disease in the fetus. J Am Coll Cardiol 1994; 23: 1452-1458
- 32 Buskens E, Grobbee DE, Frohn-Mulder IME. et al. Efficacy of Routine Fetal Ultrasound Screening for Congenital Heart Disease in Normal Pregnancy. Circulation 1996; 94: 67-72
- 33 Cullen S, Sharland GK, Allan LD. et al. Potential impact of population screening for prenatal diagnosis of congenital heart disease. Arch Dis Child 1992; 67: 775-778
- 34 Volpe P, Paladini D, Marasini M. et al. Common arterial trunk in the fetus: characteristics, associations, and outcome in a multicentre series of 23 cases. Heart 2003; 89: 1437-1441
- 35 Duke C, Sharland GK, Jones AMR. et al. Echocardiographic features and outcome of truncus arteriosus diagnosed during fetal life. Am J Cardiol 2001; 88: 1379-1384
- 36 Acherman RJ, Smallhorn JF, Freedom RM. Echocardiographic assessment of pulmonary blood supply in patients with pulmonary atresia and ventricular septal defect – ScienceDirect. J Am Coll Cardiol 1996; 28: 1308-1313
- 37 Mackie AS, Gauvreau K, Perry SB. et al. Echocardiographic predictors of aortopulmonary collaterals in infants with tetralogy and pulmonary atresia. J Am Coll Cardiol 2003; 41: 852-857
- 38 Smyllie JH, Sutherland GR, Keeton BR. The value of Doppler color flow mapping in determining pulmonary blood supply in infants with pulmonary atresia with ventricular septal defect. J Am Coll Cardiol 1989; 14: 1759-1765
- 39 Shimazaki Y, Maehara T, Blackstone EH. et al. The structure of the pulmonary circulation in tetralogy of Fallot with pulmonary atresia. A quantitative cineangiographic study. J Thorac Cardiovasc Surg 1988; 95: 1048-1058