Subscribe to RSS
DOI: 10.1055/a-0774-7756
Bacterial and Fungal Keratitis: A Retrospective Analysis at a University Hospital in Switzerland
Bakterielle und mykotische Keratitis: eine retrospektive Analyse an einer Schweizer UniversitätsklinikPublication History
received 04 September 2018
accepted 11 October 2018
Publication Date:
07 January 2019 (online)
Abstract
Background Infectious keratitis is a serious corneal disease and may lead to permanent visual deterioration if not treated rapidly and effectively. In order to determine possible changes in the spectrum of pathogens over time, we evaluated the pathogenic organisms of keratitis at a university hospital in Switzerland, comparing two time periods within a decade.
Methods In this retrospective study, 417 patients with the clinical diagnosis of bacterial or fungal keratitis in 2006/07 and 2015/16 were enrolled. In an additional analysis, all cases of fungal keratitis between 2006 and 2016 were evaluated. Collected parameters were age, gender, side, use of contact lenses, systemic, neurological and ocular diseases, trauma, previous surgery, and systemic and topical therapy before presentation. In each patient, microbiological results of corneal smears such as growth and antibiotic resistance were analysed.
Results A total of 163 and 254 eyes were included in 2006/07 and 2015/16, respectively. In 2006/07, a culture of smears revealed a bacterial cause in 70 eyes (42.9%) and a fungal cause in 4 eyes (2.5%), whereas in 2015/16, bacterial growth was found in 115 eyes (45.3%) and fungal growth in 6 eyes (2.4%). The most common bacteria in 2006/07 and 2015/16 were coagulase-negative Staphylococci (44.3 vs. 49.6%), Pseudomonas aeruginosa (18.6 vs. 13.9%), Staphylococcus aureus (10 vs. 16.5%), Corynebacterium spp. (8.6 vs. 5.2%), and Moraxella spp. (7.1 vs. 9.6%). Candida parapsilosis was the most common fungal isolate in both groups (25 vs. 33.3%). Between 2006 and 2016, fungal keratitis was found in 37 eyes (Candida spp. n = 11, Fusarium spp. n = 11, Aspergillus spp. n = 5, others n = 10). All patients with Fusarium spp. keratitis had a history of wearing contact lenses.
Conclusion The most commonly isolated bacterial organisms were Staphylococci and Pseudomonas spp., whereas fungal keratitis was mainly due to Candida spp. or Fusarium spp. No relevant variation in causative pathogens was observed between the two time periods.
Zusammenfassung
Hintergrund Eine infektiöse Keratitis ist eine schwere Hornhauterkrankung und kann, sofern nicht adäquat behandelt, zu einer permanenten Visusminderung führen. Um mögliche Änderungen im Keimspektrum über die Zeit festzustellen, haben wir eine Analyse der zugrunde liegenden Erreger an einer Universitätsklinik in der Schweiz durchgeführt, und hierfür 2 Zeitabschnitte innerhalb einer Dekade verglichen.
Patienten und Methoden In diese retrospektive Studie wurden 417 Patienten mit der klinischen Diagnose einer bakteriellen oder mykotischen Keratitis in den Jahren 2006/2007 und 2015/2016 eingeschlossen. In einer zusätzlichen Analyse wurden alle Pilzkeratitiden zwischen 2006 und 2016 evaluiert. Folgende Parameter wurden gesammelt: Alter, Geschlecht, betroffenes Auge, Tragen von Kontaktlinsen, systemische und neurologische Erkrankungen, andere Augenerkrankungen, Trauma, Voroperationen sowie systemische und topische Vortherapie.
Ergebnisse Für die Jahre 2006/2007 und 2015/2016 wurden jeweils 163 bzw. 254 Augen eingeschlossen. In den Jahren 2006/2007 konnte in den Kulturen eine bakterielle Ursache in 70 Augen (42,9%) und eine Pilzinfektion in 4 Augen (2,5%) nachgewiesen werden, während 2015/2016 Bakterien in 115 Augen (45,3%) und Pilze in 6 Augen (2,4%) als Ursache gefunden wurden. Die häufigsten bakteriellen Erreger 2006/2007 und 2015/2016 waren koagulasenegative Staphylokokken (44,3 vs. 49,6%), Pseudomonas aeruginosa (18,6 vs. 13,9%), Staphylococcus aureus (10 vs. 16,5%), Corynebacterium spp. (8,6 vs. 5,2%) und Moraxella spp. (7,1 vs. 9,6%). Candida parapsilosis war der am häufigsten isolierte Pilz (25 vs. 33,3%). Im Gesamtzeitraum 2006 – 2016 wurde in 37 Augen eine mykotische Keratitis nachgewiesen (Candida spp. n = 11, Fusarium spp. n = 11, Aspergillus spp. n = 5, andere = 10). Alle Patienten mit einer Fusarium-spp.-Keratitis waren Kontaktlinsenträger.
Schlussfolgerung Die am häufigsten isolierten bakteriellen Organismen waren Staphylokokken und Pseudomonaden, während Pilzkeratitiden hauptsächlich durch Candida spp. und Fusarium spp. bedingt waren. Es wurden keine relevanten Änderungen im Keimspektrum zwischen den 2 Zeitabschnitten gefunden.
Key words
bacterial keratitis - fungal keratitis - microbiology - coagulase-negative Staphylococcus - Pseudomonas aeruginosaSchlüsselwörter
bakterielle Keratitis - Pilzkeratitis - Mikrobiologie - koagulasenegative Staphylokokken - Pseudomonas aeruginosaSupporting Information
- Supporting Information
Supplementary Table S1 Susceptibility of the five most common pathogens in 2006/07 and 2015/16
-
References
- 1 Karsten E, Watson SL, Foster LJR. Diversity of microbial species implicated in keratitis: a review. Open Ophthalmol J 2012; 6: 110-124 doi:10.2174/1874364101206010110
- 2 Robaei D, Watson S. Corneal blindness: a global problem. Clin Experiment Ophthalmol 2014; 42: 213-214 doi:10.1111/ceo.12330
- 3 Ong HS, Corbett MC. Corneal infections in the 21st century. Postgrad Med J 2015; 91: 565-571 doi:10.1136/postgradmedj-2015-133323
- 4 Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol 2004; 15: 321-327 doi:10.1097/00055735-200408000-00008
- 5 Upadhyay MP, Srinivasan M, Whitcher JP. Microbial keratitis in the developing world: does prevention work?. Int Ophthalmol Clin 2007; 47: 17-25 doi:10.1097/IIO.0b013e318074e0b3
- 6 Shah A, Sachdev A, Coggon D. et al. Geographic variations in microbial keratitis: an analysis of the peer-reviewed literature. Br J Ophthalmol 2011; 95: 762-767 doi:10.1136/bjo.2009.169607
- 7 Basak SK, Basak S, Mohanta A. et al. Epidemiological and microbiological diagnosis of suppurative keratitis in Gangetic West Bengal, eastern India. Indian J Ophthalmol 2005; 53: 17-22 doi:10.4103/0301-4738.15280
- 8 Aldebasi YH, Aly SM, Ahmad MI. et al. Incidence and risk factors of bacteria causing infectious keratitis. Saudi Med J 2013; 34: 1156-1160
- 9 Matthews TD, Frazer DG, Minassian DC. et al. Risks of keratitis and patterns of use with disposable contact lenses. Arch Ophthalmol 1992; 110: 1559-1562 doi:10.1001/archopht.1992.01080230059020
- 10 Fernandes M, Vira D, Dey M. et al. Comparison between polymicrobial and fungal keratitis: Clinical features, risk factors, and outcome. Am J Ophthalmol 2015; 160: 873-881.e2 doi:10.1016/j.ajo.2015.07.028
- 11 Allan BD, Dart JK. Strategies for the management of microbial keratitis. Br J Ophthalmol 1995; 79: 777-786 doi:10.1136/bjo.79.8.777
- 12 Bourcier T, Thomas F, Borderie V. et al. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol 2003; 87: 834-838
- 13 Austin A, Lietman T, Rose-Nussbaumer J. Update on the Management of Infectious Keratitis. Ophthalmology 2017; 124: 1678-1689 doi:10.1016/j.ophtha.2017.05.012
- 14 Kowal VO, Levey SB, Laibson PR. et al. Use of routine antibiotic sensitivity testing for the management of corneal ulcers. Arch Ophthalmol 1997; 115: 462-465
- 15 Shalchi Z, Gurbaxani A, Ophth ME. et al. Antibiotic resistance in microbial keratitis: ten-year experience of corneal scrapes in the United Kingdom. Ophthalmology 2011; 118: 2161-2165 doi:10.1016/j.ophtha.2011.04.021
- 16 Magiorakos AP, Srinivasan A, Carey RB. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-281 doi:10.1111/j.1469-0691.2011.03570.x
- 17 Federal Office of Public Health and Federal Food Safety and Veterinary Office. Swiss Antibiotic Resistance Report 2016. Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland. 11/2016 FOPH publication number: 2016-OEG-30
- 18 Jünemann AGM, Chorągiewicz T, Ozimek M. et al. Drug bioavailability from topically applied ocular drops. Does drop size matter?. Ophthalmol J 2016; 1: 29-35 doi:10.5603/OJ.2016.0005
- 19 Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol 2016; 10: 2433-2441 doi:10.2147/OPTH.S118409
- 20 Edwards K, Keay L, Naduvilath T. et al. The penetrance and characteristics of contact lens wear in Australia. Clin Exp Optom 2014; 97: 48-54 doi:10.1111/cxo.12078
- 21 Xu K, Li Y, Ljubimov AV. et al. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes 2009; 58: 1077-1085 doi:10.2337/db08-0997
- 22 Kaji Y. Prevention of diabetic keratopathy. Br J Ophthalmol 2005; 89: 253-254 doi:10.1136/bjo.2004.055640
- 23 Watanabe R, Ishii T, Yoshida M. et al. Ulcerative keratitis in patients with rheumatoid arthritis in the modern biologic era: a series of eight cases and literature review. Int J Rheum Dis 2017; 20: 225-230 doi:10.1111/1756-185X.12688
- 24 Lamba N, Lee S, Chaudhry H. et al. A review of the ocular manifestations of rheumatoid arthritis. Cogent Med 2016; 3: 1-5 doi:10.1080/2331205X.2016.1243771
- 25 McKibbin M, Isaacs JD, Morrell AJ. Incidence of corneal melting in association with systemic disease in the Yorkshire Region, 1995–7. Br J Ophthalmol 1999; 83: 941-943 doi:10.1136/bjo.83.8.941
- 26 Galor A, Thorne JE. Scleritis and peripheral ulcerative keratitis. Rheum Dis Clin North Am 2007; 33: 835-854 doi:10.1016/j.rdc.2007.08.002
- 27 Panda A, Ahuja R, Sastry SS. Comparison of topical 0.3 % ofloxacin with fortified tobramycin plus cefazolin in the treatment of bacterial keratitis. Eye 1999; 13: 744-747 doi:10.1038/eye.1999.220
- 28 Kowalski RP, Dhaliwal DK, Karenchak LM. et al. Gatifloxacin and moxifloxacin: an in vitro susceptibility comparison to levofloxacin, ciprofloxacin, and ofloxacin using bacterial keratitis isolates. Am J Ophthalmol 2003; 136: 500-505 doi:10.1016/S0002-9394(03)00294-0
- 29 Herretes S, Wang X, Reyes JMG. Topical corticosteroids as adjunctive therapy for bacterial keratitis (Review). Cochrane Database Syst Rev 2014; DOI: 10.1002/14651858.CD005430.pub3.
- 30 Bharathi MJ, Ramakrishnan R, Meenakshi R. et al. Microbial keratitis in South India: influence of risk factors, climate, and geographical variation. Ophthalmic Epidemiol 2007; 14: 61-69 doi:10.1080/09286580601001347
- 31 Tan SZ, Walkden A, Au L. et al. Twelve-year analysis of microbial keratitis trends at a UK tertiary hospital. Eye 2017; 31: 1229-1236 doi:10.1038/eye.2017.55
- 32 Kredics L, Narendran V, Shobana CS. et al. Filamentous fungal infections of the cornea: a global overview of epidemiology and drug sensitivity. Mycoses 2015; 58: 243-260 doi:10.1111/myc.12306
- 33 Nielsen SE, Nielsen E, Julian HO. et al. Incidence and clinical characteristics of fungal keratitis in a Danish population from 2000 to 2013. Acta Ophthalmol 2015; 93: 54-58 doi:10.1111/aos.12440
- 34 Ahearn DG, Zhang S, Stulting RD. et al. Fusarium keratitis and contact lens wear: facts and speculations. Med Mycol 2008; 46: 397-410 doi:10.1080/13693780801961352
- 35 Iselin KC, Baenninger PB, Schmittinger-Zirm A. et al. Fungal Keratitis: A Six-Year Review at a Tertiary Referral Centre. Klin Monatsbl Augenheilkd 2017; 234: 419-425 doi:10.1055/s-0042-123233
- 36 Orlans HO, Hornby SJ, Bowler ICJW. In vitro antibiotic susceptibility patterns of bacterial keratitis isolates in Oxford, UK: a 10-year review. Eye 2011; 25: 489-493 doi:10.1038/eye.2010.231
- 37 Schaefer F, Bruttin O, Zografos L. et al. Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol 2001; 85: 842-847 doi:10.1136/bjo.85.7.842
- 38 Desai S. Ocular pharmacokinetics of tobramycin. Int Ophthalmol 1993; 17: 201-210
- 39 Tang-Liu DDS, Schwob DL, Usansky JI. et al. Comparative tear concentrations over time of ofloxacin and tobramycin in human eyes. Clin Pharmacol Ther 1994; 55: 284-292 doi:10.1038/clpt.1994.29
- 40 Robertson SM, Curtis MA, Schlech BA. et al. Ocular pharmacokinetics of moxifloxacin after topical treatment of animals and humans. Surv Ophthalmol 2005; 50: S32-S45 doi:10.1016/j.survophthal.2005.07.001
- 41 Gilbert ML, Wilhelmus KR, Osato MS. Comparative bioavailability and efficacy of fortified topical tobramycin. Invest Ophthalmol Vis Sci 1987; 28: 881-885
- 42 Zhao X, Tong Y, Wang X. et al. Comparison of the Ocular Penetration and Pharmacokinetics Between Natamycin and Voriconazole After Topical Instillation in Rabbits. J Ocul Pharmacol Ther 2018; 34: 460-467 doi:10.1089/jop.2017.0139
- 43 Sradhanjali S, Yein B, Sharma S. et al. In vitro synergy of natamycin and voriconazole against clinical isolates of Fusarium, Candida, Aspergillus and Curvularia spp. Br J Ophthalmol 2018; 102: 142-145 doi:10.1136/bjophthalmol-2017-310683
- 44 Badenoch PR, McDonald PJ, Coster DJ. Effect of inflammation on antibiotic penetration into the anterior segment of the rat eye. Invest Ophthalmol Vis Sci 1986; 27: 958-965
- 45 Haas W, Pillar CM, Torres M. et al. Monitoring antibiotic resistance in ocular microorganisms: Results from the Antibiotic Resistance Monitoring in Ocular micRorganisms (ARMOR) 2009 surveillance study. Am J Ophthalmol 2011; 152: 567-574 doi:10.1016/j.ajo.2011.03.010
- 46 Blanco C, Núñez MX. Antibiotic susceptibility of staphylococci isolates from patients with chronic conjunctivitis: including associated factors and clinical evaluation. J Ocul Pharmacol Ther 2013; 29: 803-808 doi:10.1089/jop.2013.0040
- 47 Pucci MJ, Podos SD, Thanassi JA. et al. In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 2011; 55: 2860-2871 doi:10.1128/AAC.01666-10
- 48 Bremond-Gignac D, Chiambaretta F, Milazzo S. A European perspective on topical ophthalmic antibiotics: current and evolving options. Ophthalmol Eye Dis 2011; 3: 29-43 doi:10.4137/OED.S4866
- 49 Kowalski RP, Yates KA, Romanowski EG. et al. An ophthalmologistʼs guide to understanding antibiotic susceptibility and minimum inhibitory concentration data. Ophthalmology 2005; 112: 1-6 doi:10.1016/j.ophtha.2005.06.025
- 50 Bertino JSJ. Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol 2009; 3: 507-521
- 51 Asbell PA, Sahm DF, Shaw M. et al. Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J Cataract Refract Surg 2008; 34: 814-818 doi:10.1016/j.jcrs.2008.01.016
- 52 Hoddenbach JG, Boekhoorn SS, Wubbels R. et al. Clinical presentation and morbidity of contact lens-associated microbial keratitis: a retrospective study. Graefes Arch Clin Exp Ophthalmol 2014; 252: 299-306 doi:10.1007/s00417-013-2514-1
- 53 McClintic SM, Prajna NV, Srinivasan M. et al. Visual outcomes in treated bacterial keratitis: four years of prospective follow-up. Invest Ophthalmol Vis Sci 2014; 55: 2935-2940 doi:10.1167/iovs.14-13980
- 54 Yilmaz S, Ozturk I, Maden A. Microbial keratitis in West Anatolia, Turkey: a retrospective review. Int Ophthalmol 2007; 27: 261-268 doi:10.1007/s10792-007-9069-2
- 55 Kaye SB, Rao PG, Smith G. et al. Simplifying collection of corneal specimens in cases of suspected bacterial keratitis. J Clin Microbiol 2003; 41: 3192-3197 doi:10.1128/JCM.41.7.3192-3197.2003
- 56 Marasini S, Swift S, Dean SJ. et al. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland. J Ophthalmol 2016; 2016: 3769341 doi:10.1155/2016/3769341
- 57 Mullin GS, Rubinfeld RS. The antibacterial activity of topical anesthetics. Cornea 1997; 16: 662-665