Subscribe to RSS
DOI: 10.1055/a-0900-4021
Cerebroplacental and Uterine Doppler Indices in Pregnancies Complicated by Congenital Heart Disease of the Fetus
Cerebroplazentare und uterine Dopplerwerte in Schwangerschaften mit fetalem kongenitalem HerzfehlerPublication History
29 November 2018
15 April 2019
Publication Date:
14 June 2019 (online)
Abstract
Purpose Children with congenital heart disease (CHD) are known to have impaired neurodevelopment possibly influenced by altered cerebroplacental hemodynamics antenatally. We compared fetomaternal Doppler patterns in different CHD groups with published normative values during gestation.
Materials and Methods Retrospective cohort study consisting of 248 CHD fetuses. Subgroups were generated according to the expected ascending aorta oxygen saturation: low portion of high oxygenated umbilical venous (UV) blood (group 1: n = 108), intermediate portion of UV blood due to intracardiac mixing with oxygen poor systemic blood (group 2: n = 103), high (group 3: n = 13) and low portion of UV blood without mixing of blood (group 4: n = 24). Doppler examination included umbilical artery and middle cerebral artery pulsatility index (UA-PI, MCA-PI), cerebroplacental ratio (CPR) and mean uterine artery (mUtA) PI. For mean comparisons at different gestational ages (GA), estimated marginal means from regression models are reported for GA 22 weeks (wks), GA 30 wks and GA 38 wks.
Results Z-score transformed values of MCA-PI (zMCA-PI) were significantly lower in group 1 compared to all other subgroups at GA 30 wks (p < 0.05). At 38 wks, group 1 had significantly lower values of zMCA-PI and zCPR compared to groups 2 and 4. Group 1 fetuses showed a significant association between zMCA-PI and zCPR (negative) and GA as well as zmUtA-PI (positive) and GA compared to reference values.
Conclusion Our data confirm that CHD fetuses have a higher rate of cerebral redistribution in the third trimester. Changes in Doppler patterns were mainly observed in CHD with a low portion of UV blood in the ascending aorta.
Zusammenfassung
Ziel Kinder mit angeborenem Herzfehler (CHD) weisen häufig neurokognitive Entwicklungsstörungen auf, die möglicherweise durch pränatale Veränderungen der cerebroplazentare Hämodynamik beeinflusst werden. Ziel der Studie war es, feto-maternale Dopplerwerte in verschiedenen CHD-Gruppen mit Normwerten zu vergleichen.
Material und Methode Retrospektive Kohorten-Studie mit 248 CHD-Feten. Die CHD-Subgruppen wurden entsprechend der erwarteten Sauerstoffsättigung in der Aorta ascendens gebildet: Niedriger Blutgehalt aus der sauerstoffreichen Umbilikalvene (Gruppe 1: n = 108), intermediärer Blutgehalt durch die intrakardiale Vermischung mit sauerstoffarmem systemischem Blut (Gruppe 2: n = 103) sowie hoher (Gruppe 3: n = 13) und niedriger umbilikal-venöser Blutgehalt ohne intrakardiale Vermischung (Gruppe 4: n = 24). Es wurden der Pulsatilitäts-Index der Nabelschnurarterie (UA-PI) und mittleren Hirnarterie (MCA-PI), die cerebroplazentare Ratio (CPR) sowie der mittlere PI beider uterinen Arterien (mUtA-PI) bestimmt. Für mittlere Vergleiche in den verschiedenen Altersstufen werden die geschätzten Randmittel aus den Regressionsmodellen für Schwangerschaftswoche (SSW) 22, 30 und 38 angegeben.
Ergebnisse Z-Score-transformierte Werte für den MCA-PI (zMCA-PI) waren in Gruppe 1 im Vergleich zu allen anderen Subgruppen in SSW 30 signifikant niedriger (p < 0,05). In der 38. SSW hatte Gruppe 1 im Vergleich zu Gruppe 2 und 4 deutlich niedrigere Werte für den zMCA-PI und die zCPR. Bei CHD-Feten der Gruppe 1 zeigte sich ein signifikanter Zusammenhang zwischen zMCA-PI bzw. zCPR (negativ) und dem Gestationsalter (GA) sowie zmUtA-PI (positiv) und dem GA im Vergleich zu den Referenzwerten.
Schlussfolgerung CHD-Feten zeigen im dritten Trimenon eine höhere Rate an zerebraler Blutfluss-Umverteilung. Veränderungen der Dopplerwerte wurden hauptsächlich bei CHD-Feten mit niedrigem umbilikal-venösem Blutgehalt in der Aorta ascendens beobachtet.
-
References
- 1 Majnemer A, Limperopoulos C, Shevell M. et al. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr 2006; 148: 72-77
- 2 Limperopoulos C, Majnemer A, Shevell M. et al. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr 2000; 137: 638-645
- 3 Donofrio MT, Massaro AN. Impact of congenital heart disease on brain development and neurodevelopmental outcome. Int J Pediatr 2010; 2010: 359-390
- 4 Khalil A, Suff N, Thilaganathan B. et al. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014; 43: 14-24
- 5 Massaro AN, El-Dib M, Glass P. et al. Factors associated with adverse neurodevelopmental outcomes in infants with congenital heart disease. Brain Dev 2008; 30: 437-446
- 6 McQuillen PS, Miller SP. Congenital heart disease and brain development. Ann N Y Acad Sci 2010; 1184: 68-86
- 7 Domi T, Edgell DS, McCrindle BW. et al. Frequency, predictors, and neurologic outcomes of vaso-occlusive strokes associated with cardiac surgery in children. Pediatrics 2008; 122: 1292-1298
- 8 Bellinger DC, Wypij D, duPlessis AJ. et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 2003; 126: 1385-1396
- 9 Limperopoulos C, Majnemer A, Shevell MI. et al. Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr 2002; 141: 51-58
- 10 Masoller N, Martínez JM, Gómez O. et al. Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2014; 44: 182-187
- 11 Miller SP, McQuillen PS, Hamrick S. et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357: 1928-1938
- 12 Mahle WT, Tavani F, Zimmerman RA. et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106: I109-I114
- 13 Hinton RB, Andelfinger G, Sekar P. et al. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res 2008; 64: 364-369
- 14 Shillingford AJ, Ittenbach RF, Marino BS. et al. Aortic morphometry and microcephaly in hypoplastic left heart syndrome. Cardiol Young 2007; 17: 189-195
- 15 Graupner O, Koch J, Enzensberger C. et al. Head biometry in fetuses with isolated congenital heart disease. Ultraschall in Med 2020; 41: 69-76 . doi:10.1055/a-0796-6502
- 16 Berg C, Gembruch O, Gembruch U. et al. Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect?. Ultrasound Obstet Gynecol 2009; 34: 666-672
- 17 Donofrio MT, Bremer YA, Schieken RM. et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 2003; 24: 436-443
- 18 Kaltman JR, Di H, Tian Z. et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 2005; 25: 32-36
- 19 Szwast A, Tian Z, McCann M. et al. Comparative analysis of cerebrovascular resistance in fetuses with single-ventricle congenital heart disease. Ultrasound Obstet Gynecol 2012; 40: 62-67
- 20 Ruiz A, Cruz-Lemini M, Masoller N. et al. Longitudinal changes in fetal biometry and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2017; 49: 379-386
- 21 Carvalho JS, Allan LD. International Society of Ultrasound in Obstetrics and Gynecology. et al. S. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41: 348-359
- 22 Ebbing C, Rasmussen S, Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet Gynecol 2007; 30: 287-296
- 23 Gómez O, Figueras F, Fernández S. et al. Reference ranges for uterine artery mean pulsatility index at 11–41 weeks of gestation. Ultrasound Obstet Gynecol 2008; 32: 128-132
- 24 Rudolph AM. Congenital cardiovascular malformations and the fetal circulation. Arch Dis Child Fetal Neonatal Ed 2010; 95: F132-F136
- 25 Modena A, Horan C, Visintine J. et al. Fetuses with congenital heart disease demonstrate signs of decreased cerebral impedance. Am J Obstet Gynecol 2006; 195: 706-710
- 26 Masoller N, Sanz-Cortés M, Crispi F. et al. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth. Ultrasound Obstet Gynecol 2016; 47: 65-73
- 27 Llurba E, Syngelaki A, Sánchez O. et al. Maternal serum placental growth factor at 11–13 weeks' gestation and fetal cardiac defects. Ultrasound Obstet Gynecol 2013; 42: 169-174
- 28 Llurba E, Sánchez O, Ferrer Q. et al. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur Heart J 2014; 35: 701-707
- 29 Ruiz A, Ferrer Q, Sánchez O. et al. Placenta-related complications in women carrying a foetus with congenital heart disease. J Matern Fetal Neonatal Med 2016; 29: 3271-3275
- 30 Williams IA, Tarullo AR, Grieve PG. et al. Fetal cerebrovascular resistance and neonatal EEG predict 18-month neurodevelopmental outcome in infants with congenital heart disease. Ultrasound Obstet Gynecol 2012; 40: 304-309
- 31 Yamamoto Y, Khoo NS, Brooks PA. et al. Severe left heart obstruction with retrograde arch flow influences fetal cerebral and placental blood flow. Ultrasound Obstet Gynecol 2013; 42: 294-299
- 32 Jansen FA, van Zwet EW, Rijlaarsdam ME. et al. Head growth in fetuses with isolated congenital heart defects: lack of influence of aortic arch flow and ascending aorta oxygen saturation. Ultrasound Obstet Gynecol 2016; 48: 357-364
- 33 Mebius MJ, Clur SAB, Vink AS. et al. Growth patterns and cerebro-placental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2019; 53: 769-778
- 34 Mebius MJ, Kooi EMW, Bilardo CM. et al. Brain Injury and Neurodevelop- mental Outcome in Congenital Heart Disease: A Systematic Review. Pediatrics 2017; 140: e20164055
- 35 Fuller S, Nord AS, Gerdes M. et al. Predictors of impaired neurodevelopmental outcomes at one year of age after infant cardiac surgery. Eur J Cradiothoracic Surg 2009; 36: 40-47
- 36 Ballweg JA, Wernovsky G, Gaynor JW. Neurodevelopmental outcomes following congenital heart surgery. Pediatr Cardiol 2007; 28: 126-133
- 37 Paladini D, Alfirevic Z, Carvalho JS. et al. Prenatal counselling for neurodevelopmental delay in congenital heart disease. The results of a worldwide survey of experts’ attitudes advise caution. Ultrasound Obstet Gynecol 2016; 47: 667-671