Subscribe to RSS
DOI: 10.1055/a-0965-9892
Sarkopenie: eine Herausforderung im Alter
Publication History
Publication Date:
19 February 2020 (online)
Zusammenfassung
Sarkopenie ist ein geriatrisches Syndrom, das durch einen generalisierten Verlust von Muskelmasse und Muskelfunktion gekennzeichnet ist. Damit verbunden ist eine erhöhte Wahrscheinlichkeit von Stürzen, Frakturen, Behinderung und Mortalität. Seit Oktober 2016 gibt es in den USA einen ICD-10-CM-Code (M62.84) für Sarkopenie. In Deutschland kann Sarkopenie seit 2018 im ICD-10-GM (M62.50) codiert werden. Zur Selektion in der Primärversorgung besteht die Möglichkeit mittels eines Sarkopeniefragebogens (SARC-F) gefährdete Patienten zu identifizieren. Diese können dann einer weiterführenden Diagnostik zugeführt werden. Gemäß der aktuellen revidierten Fassung des europäischen Sarkopeniekonsensus ist ein Therapiebeginn und eine weitere Ursachenabklärung bereits bei Vorliegen einer eingeschränkten Muskelkraft möglich. Gegenwärtig besteht die Therapie aus Kraft- und Balancetraining sowie einer Ernährungsberatung mit dem Ziel einer proteinreichen Ernährung. Eine medikamentöse Behandlung der Sarkopenie ist noch nicht verfügbar. Einige Substanzen sind jedoch in der klinischen Prüfung. Am vielversprechendsten scheint die Gruppe der Myostatinantagonisten zu sein.
Abstract
Sarcopenia is defined as a geriatric syndrome based on a generalized skeletal muscle loss and impairment of physical performance. Sarcopenia is associated with an increased likelihood of adverse outcomes including falls, fractures, disability and mortality. Since October 2016 there is an ICD-10-CM code (M62.84) for sarcopenia in the USA. In Germany (ICD-10-GM) it is possible to encode sarcopenia since 2018 (M62.50). For screening in the primary care setting, a questionnaire (SARC-F) has been introduced to identify patients at risk for sarcopenia, leading to further diagnostics. According to the current revised version of the European sarcopenia consensus definition, therapy and further assessment of causes can already be started when reduced muscle strength is diagnosed. At present, the therapy consists of resistance and balance training as well as nutritional advice with the aim of a protein-rich diet. A drug treatment of sarcopenia is not available so far. However, some substances are in clinical trials. Most promising seems to be the group of myostatin antagonists.
-
Literatur
- 1 Rosenberg IH. Summary Comment. Am J Clin Nutr 1989; 50: 1231-1233
- 2 Shaw SC, Dennison EM, Cooper C. Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse. Calcif Tissue Int 2017; 101: 229-247
- 3 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412-423
- 4 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2018; 1-16
- 5 Cruz-Jentoft AJ, Landi F, Topinková E. et al. Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 2010; 13: 1-7
- 6 Argilés JM, Anker SD, Evans WJ. et al. Consensus on cachexia definitions. J Am Med Dir Assoc 2010; 11: 229-230
- 7 Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 2016; 7: 512-514
- 8 Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018; 47: 123-132
- 9 Kortebein P, Ferrando A, Lombeida J. et al. Effect of 10 Days of Bed Rest on Skeletal Muscle in Healthy Older Adults. JAMA 2007; 297: 1769
- 10 Peters A. The selfish brain: Competition for energy resources. Am J Hum Biol 2011; 23: 29-34
- 11 Cederholm T, Jensen GL, Correia MITD. et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. Clin Nutr 2018; 38: 1-9
- 12 Vitale G, Cesari M, Mari D. Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med 2016; 35: 10-15
- 13 Drey M, Krieger B, Sieber CC. et al. Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc 2014; 15: 435-439
- 14 Drey M, Hasmann SE, Krenovsky J-P. et al. Associations between Early Markers of Parkinson’s Disease and Sarcopenia. Front Aging Neurosci 2017; 9: 53
- 15 Stangl MK, Böcker W, Chubanov V. et al. Sarcopenia – Endocrinological and Neurological Aspects. Exp Clin Endocrinol Diabetes 2018; 127: 8-22
- 16 Dodds RM, Roberts HC, Cooper C. et al. The Epidemiology of Sarcopenia. J Clin Densitom 2016; 18: 461-466
- 17 Marty E, Liu Y, Samuel A. et al. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone 2017; 105: 276-286
- 18 Rodríguez-Rejón AI, Ruiz-López MD, Wanden-Berghe C. et al. Prevalence and Diagnosis of Sarcopenia in Residential Facilities: A Systematic Review. Adv Nutr 2019; 10: 51-58
- 19 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010; 39: 412-423
- 20 Phillips A, Strobl R, Vogt S. et al. Sarcopenia is associated with disability status – results from the KORA-Age study. Osteoporos Int 2017; 28: 2069-2079
- 21 McLean RR, Shardell MD, Alley DE. et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci 2014; 69: 576-583
- 22 Landi F, Liperoti R, Russo A. et al. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin Nutr 2012; 31: 652-658
- 23 Zhang X, Huang P, Dou Q. et al. Falls among older adults with sarcopenia dwelling in nursing home or community: A meta-analysis. Clin Nutr 2019; 1-7
- 24 Huo YR, Suriyaarachchi P, Gomez F. et al. Comprehensive nutritional status in sarco-osteoporotic older fallers. J Nutr Heal Aging 2015; 19: 474-480
- 25 Beaudart C, Zaaria M, Pasleau F. et al. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLoS One 2017; 12: e0169548
- 26 Maeda K, Takaki M, Akagi J. Decreased Skeletal Muscle Mass and Risk Factors of Sarcopenic Dysphagia: A Prospective Observational Cohort Study. Journals Gerontol Ser A Biol Sci Med Sci 2016; glw190
- 27 Malmstrom TK, Miller DK, Simonsick EM. et al. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle 2016; 7: 28-36
- 28 Beaudart C, McCloskey E, Bruyère O. et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr 2016; 16: 1-10
- 29 Dodds RM, Syddall HE, Cooper R. et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014; 9: e113637
- 30 Cesari M, Kritchevsky SB, Newman AB. et al. Unspeakable Truths. pdf 2009; 57: 251-259
- 31 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
- 32 Studenski SA, Peters KW, Alley DE. et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. Journals Gerontol – Ser A Biol Sci Med Sci 2014; 69 A: 547-558
- 33 Gould H, Brennan SL, Kotowicz MA. et al. Total and Appendicular Lean Mass Reference Ranges for Australian Men and Women: The Geelong Osteoporosis Study. Calcif Tissue Int 2014; 94: 363-372
- 34 Sergi G, De Rui M, Veronese N. et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin Nutr 2015; 34: 667-673
- 35 Podsiadlo D, Richardson S. The timed „Up & Go“: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39: 142-148
- 36 Bischoff HA, Stähelin HB, Monsch AU. et al. Identifying a cut-off point for normal mobility: a comparison of the timed „up and go“ test in community-dwelling and institutionalised elderly women. Age Ageing 2003; 32: 315-320
- 37 Newman AB, Simonsick EM, Naydeck BL. et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. J Am Med Assoc 2006; 295: 2018-2026
- 38 Pavasini R, Guralnik J, Brown JC. et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med 2016; 14: 1-9
- 39 Guralnik JM, Ferrucci L, Simonsick EM. et al. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N Engl J Med 1995; 332: 556-562
- 40 Beaudart C, Biver E, Reginster JY. et al. Development of a self-administrated quality of life questionnaire for sarcopenia in elderly subjects: The SarQoL. Age Ageing 2015; 44
- 41 Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 2011; 43: 249-258
- 42 Papa EV, Dong X, Hassan M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: A systematic review. Clin Interv Aging 2017; 12: 955-961
- 43 Fiatarone MA, Marks EC, Ryan ND. et al. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 1990; 263: 3029-3034
- 44 Perry HM, Horowitz M, Morley JE. et al. Longitudinal changes in serum 25-hydroxyvitamin D in older people. Metabolism 1999; 48: 1028-1032
- 45 Nieschlag E. Current topics in testosterone replacement of hypogonadal men. Best Pract Res Clin Endocrinol Metab 2015; 29: 77-90
- 46 Frisoli A, Chaves PHM, Pinheiro MM. et al. The effect of nandrolone decanoate on bone mineral density, muscle mass, and hemoglobin levels in elderly women with osteoporosis: a double-blind, randomized, placebo-controlled clinical trial. J Gerontol A Biol Sci Med Sci 2005; 60: 648-653
- 47 MacDonald JH, Marcora SM, Jibani MM. et al. Nandrolone decanoate as anabolic therapy in chronic kidney disease: A randomized phase II dose-finding study. Nephron – Clin Pract 2007; 106
- 48 Papanicolaou DA, Ather SN, Zhu H. et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J Nutr Health Aging 2013; 17: 533-543
- 49 Crawford JC, Johnston MA, Hancock ML. et al. Enobosarm, a selective androgen receptor modulator (SARM), increases lean bodymass (LBM) in advanced nsclc patients; updated results of two pivotal, international phase 3 trials. Support care cancer 2014; 22: S30-S31
- 50 Crawford J, Prado CMM, Johnston MA. et al. Study Design and Rationale for the Phase 3 Clinical Development Program of Enobosarm, a Selective Androgen Receptor Modulator, for the Prevention and Treatment of Muscle Wasting in Cancer Patients (POWER Trials). Curr Oncol Rep 2016; 18: 37
- 51 Rooks D, Praestgaard J, Hariry S. et al. Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled, Proof-of-Concept Study. J Am Geriatr Soc 2017; 65: 1988-1995
- 52 Becker C, Lord SR, Studenski SA. et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 2015; 3: 948-957
- 53 Band MM, Sumukadas D, Struthers AD. et al. Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial. Trials 2018; 19: 6
- 54 Pötsch MS, Tschirner A, Palus S. et al. The anabolic catabolic transforming agent (ACTA) espindolol increases muscle mass and decreases fat mass in old rats. J Cachexia Sarcopenia Muscle 2014; 5: 149-158
- 55 Sumukadas D, Witham MD, Struthers AD. et al. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ 2007; 177: 867-874
- 56 Morley JE. Pharmacologic Options for the Treatment of Sarcopenia. Calcif Tissue Int 2016; 98: 319-333
- 57 Cardon-Thomas DK, Riviere T, Tieges Z. et al. Dietary protein in older adults: Adequate daily intake but potential for improved distribution. Nutrients 2017; 9: 1-10
- 58 Moore DR, Churchward-Venne TA. et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 2015; 70: 57-62
- 59 Baum JI, Kim IY, Wolfe RR. Protein consumption and the elderly: What is the optimal level of intake?. Nutrients 2016; 8: 1-9
- 60 Bauer J, Biolo G, Cederholm T. et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013; 14: 542-559
- 61 Bauer JM, Verlaan S, Bautmans I. et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J Am Med Dir Assoc 2015; 16: 740-747
- 62 Wilkinson DJ, Bukhari SSI, Phillips BE. et al. Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women. Clin Nutr 2018; 37: 2011-2021
- 63 Beaudart C, Dawson A, Shaw SC. et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017; 28: 1817-1833
- 64 Ikizler TA, Cano NJ, Franch H. et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 2013; 84: 1096-1107
- 65 Brandi ML, van Loon LJ, Robinson SM. et al. Does nutrition play a role in the prevention and management of sarcopenia?. Clin Nutr 2017; 37: 1121-1132