
Zusammenfassung
Der Einsatz von Tiefen Neuronalen Netzen (Deep Learning) eröffnet neue Möglichkeiten in der digitalen Bildverarbeitung. Auch für die Auswertung von Bilddaten in der Ophthalmologie wird diese Methode erfolgreich eingesetzt und findet weite Verbreitung. In diesem Artikel wird die methodische Vorgehensweise beim Deep Learning betrachtet und der klassischen Vorgehensweise für die Entwicklung von Methoden für die digitale Bildverarbeitung gegenübergestellt. Dabei wird auf Unterschiede eingegangen und die wichtiger werdende Rolle von Trainingsdaten für die Modellbildung erklärt. Weiterhin wird die Vorgehensweise des Transfer-Lernens (Transfer Learning) für Deep Learning am Beispiel eines Datensatzes aus der kornealen Konfokalmikroskopie vorgestellt. Dabei wird auf die Vorteile der Methode und auf Besonderheiten beim Umgang mit medizinischen Mikroskopdaten eingegangen.
Abstract
The use of deep neural networks (“deep learning”) creates new possibilities in digital image processing. This approach has been widely applied and successfully used for the evaluation of image data in ophthalmology. In this article, the methodological approach of deep learning is examined and compared to the classical approach for digital image processing. The differences between the approaches are discussed and the increasingly important role of training data for model generation is explained. Furthermore, the approach of transfer learning for deep learning is presented with a representative data set from the field of corneal confocal microscopy. In this context, the advantages of the method and the specific problems when dealing with medical microscope data will be discussed.
Schlüsselwörter
digitale Bildverarbeitung - maschinelles Lernen - Tiefe Neuronale Netze - Transfer-Lernen
Key words
digital image processing - machine learning - deep learning - transfer learning