Subscribe to RSS
DOI: 10.1055/a-1030-1238
Derzeitiger Stand zur primären Neuroprotektion beim Glaukom
Current State of Primary Neuroprotection in Glaucoma Supported by: FoRUMSupported by: Deutsche Forschungsgemeinschaft JO-886/1-3
Supported by: Ernst-und-Berta Grimmke Stiftung
Publication History
eingereicht 27 August 2019
akzeptiert 01 October 2019
Publication Date:
22 January 2020 (online)
Zusammenfassung
Angesichts der zunehmenden Alterung unserer Gesellschaft wird es in den kommenden Jahren zu einem Anstieg von starken Sehbinderungen und Erblindungen, auch durch das Glaukom, kommen. Aktuell beschränken sich die Therapieoptionen lediglich auf die Behandlung der Symptome, was im besten Fall zu einer Verlangsamung der Progression führt, jedoch nicht zur Heilung. Es ist daher notwendig, neue Therapiestrategien zu entwickeln, um das Glaukom adäquat und effektiv behandeln zu können und damit die Lebensqualität der Betroffenen zu verbessern. Ein möglicher Ansatz scheint die primäre Neuroprotektion darzustellen, die unabhängig von einer Drucksenkung wirkt. Es gibt Hinweise, dass Komponenten des Immunsystems eine Rolle im Rahmen der Erkrankung bzw. des Unterganges der retinalen Ganglienzellen spielen. So wurden Hinweise auf eine Beteiligung von Hitzeschockproteinen, des Komplementsystems, aber auch von Mikrogliazellen gefunden. Daher scheint eine therapeutische Modulation dieser Faktoren ein interessanter neuer Angriffspunkt für die Neuroprotektion zu sein. Untersuchungen im Tiermodell zeigten bspw., dass eine Inhibition des Komplementsystems oder der Mikroglia zu einem Schutz führt. Durch eine Modulation der Hitzeschockproteine könnten entweder deren protektive Eigenschaften gefördert oder ihre schädliche Funktion gehemmt werden, um so einen Glaukomschaden zu verhindern. Diese neuroprotektiven Ansätze könnten in Zukunft die Therapieoptionen von Glaukompatienten erweitern.
Abstract
In view of the aging members of our society, there will be an increase in severe visual impairment and blindness, also due to glaucoma, in the coming years. Therapy options are limited to treat occurring symptoms. Currently, only a deceleration of the pathogenesis progression, but no cure, is available. Therefore, it is necessary to develop new therapeutic strategies to treat glaucoma adequately and effectively, thus improving the quality of life of those affected. One possible approach seems to be primary neuroprotection, which acts independently of an intraocular pressure reduction. There are indications that components of the immune system play a role in the context of the disease or the loss of retinal ganglion cells. Thus, evidence of an involvement of heat shock proteins, the complement system, but also, for example, microglial cells, were found. To this end, therapeutic modulation of these factors seems to be an interesting new target for neuroprotection. Studies in animal models have shown that an inhibition of the complement system or microglia leads to a protection. Modulation of heat shock proteins may enhance their protective properties or inhibit their destroying function to prevent glaucoma damage. These neuroprotective substances could expand the treatment options of glaucoma patients in the future.
-
Literatur
- 1 Wheeler L, WoldeMussie E, Lai R. Role of alpha-2 agonists in neuroprotection. Surv Ophthalmol 2003; 48 (Suppl. 01) S47-S51
- 2 Grus FH, Joachim SC, Hoffmann EM. et al. Complex autoantibody repertoires in patients with glaucoma. Mol Vis 2004; 10: 132-137
- 3 Joachim SC, Bruns K, Lackner KJ. et al. Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res 2007; 32: 501-509 doi:10.1080/02713680701375183
- 4 Boehm N, Wolters D, Thiel U. et al. New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun 2012; 26: 96-102 doi:10.1016/j.bbi.2011.07.241
- 5 Wax MB, Tezel G, Saito I. et al. Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am J Ophthalmol 1998; 125: 145-157
- 6 Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci 1998; 39: 2277-2287
- 7 Joachim SC, Reichelt J, Berneiser S. et al. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch Clin Exp Ophthalmol 2008; 246: 573-580 doi:10.1007/s00417-007-0737-8
- 8 Chen H, Cho KS, Vu THK. et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 2018; 9: 3209 doi:10.1038/s41467-018-05681-9
- 9 Gramlich OW, Beck S, von Thun und Hohenstein-Blaul N. et al. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 2013; 8: e57557 doi:10.1371/journal.pone.0057557
- 10 Wax MB, Tezel G, Edward PD. Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch Ophthalmol 1998; 116: 993-1001
- 11 Boehm N, Beck S, Lossbrand U. et al. Analysis of Complement Proteins in Retina and Sera of Glaucoma Patients. Invest Ophthalmol Vis Sci 2010; 51: 5221
- 12 Tezel G, Yang X, Luo C. et al. Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci 2010; 51: 5071-5082 doi:10.1167/iovs.10-5289
- 13 Yuan L, Neufeld AH. Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001; 64: 523-532
- 14 Wang L, Cioffi GA, Cull G. et al. Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci 2002; 43: 1088-1094
- 15 Morgan BP. Complement in the pathogenesis of Alzheimerʼs disease. Semin Immunopathol 2018; 40: 113-124 doi:10.1007/s00281-017-0662-9
- 16 Tatomir A, Talpos-Caia A, Anselmo F. et al. The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol Res 2017; 65: 1103-1109 doi:10.1007/s12026-017-8961-8
- 17 Murphy K, Travers P, Walport M. Janewayʼs Immunobiology. New York: Garland Science; 2008
- 18 Kuehn MH, Kim CY, Ostojic J. et al. Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp Eye Res 2006; 83: 620-628 doi:10.1016/j.exer.2006.03.002
- 19 Jha P, Banda H, Tytarenko R. et al. Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. Mol Immunol 2011; 48: 2151-2158 doi:10.1016/j.molimm.2011.07.012
- 20 Becker S, Reinehr S, Dick HB. et al. [Complement activation after induction of ocular hypertension in an animal model]. Ophthalmologe 2015; 112: 41-48 doi:10.1007/s00347-014-3100-6
- 21 Noristani R, Kuehn S, Stute G. et al. Retinal and optic nerve damage is associated with early glial responses in an experimental autoimmune glaucoma model. J Mol Neurosci 2016; 58: 470-482 doi:10.1007/s12031-015-0707-2
- 22 Casola C, Schiwek JE, Reinehr S. et al. S100 alone has the same destructive effect on retinal ganglion cells as in combination with HSP 27 in an autoimmune glaucoma model. J Mol Neurosci 2015; 56: 228-236 doi:10.1007/s12031-014-0485-2
- 23 Joachim SC, Gramlich OW, Laspas P. et al. Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 2012; 7: e40616 doi:10.1371/journal.pone.0040616
- 24 Reinehr S, Reinhard J, Gandej M. et al. Simultaneous complement response via lectin pathway in retina and optic nerve in an experimental autoimmune glaucoma model. Front Cell Neurosci 2016; 10: 140 doi:10.3389/fncel.2016.00140
- 25 Stasi K, Nagel D, Yang X. et al. Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest Ophthalmol Vis Sci 2006; 47: 1024-1029 doi:10.1167/iovs.05-0830
- 26 Howell GR, Macalinao DG, Sousa GL. et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 2011; 121: 1429-1444 doi:10.1172/JCI44646
- 27 Reinehr S, Reinhard J, Gandej M. et al. S100B immunization triggers NFκB and complement activation in an autoimmune glaucoma model. Sci Rep 2018; 8: 9821 doi:10.1038/s41598-018-28183-6
- 28 Nauta AJ, Raaschou-Jensen N, Roos A. et al. Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 2003; 33: 2853-2863 doi:10.1002/eji.200323888
- 29 Howell GR, Soto I, Ryan M. et al. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation 2013; 10: 76 doi:10.1186/1742-2094-10-76
- 30 Gomes SC, Reinehr S, Gassel CJ. et al. Novel treatment approach via complement factor C5 inhibition in an Experimental Autoimmune Glaucoma model. Invest Ophthalmol Vis Sci 2019; 60: 4860
- 31 Bosco A, Anderson SR, Breen KT. et al. Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma. Mol Ther 2018; 26: 2379-2396 doi:10.1016/j.ymthe.2018.08.017
- 32 Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22: 631-677 doi:10.1146/annurev.ge.22.120188.003215
- 33 Wax MB, Tezel G, Kawase K. et al. Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 2001; 108: 296-302 doi:10.1016/s0161-6420(00)00525-x
- 34 Tezel G, Wax MB. The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 2000; 20: 3552-3562
- 35 Tezel G, Hernandez R, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol 2000; 118: 511-518
- 36 Bruey JM, Ducasse C, Bonniaud P. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2: 645-652 doi:10.1038/35023595
- 37 Chidlow G, Wood JP, Casson RJ. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury. PLoS One 2014; 9: e114838 doi:10.1371/journal.pone.0114838
- 38 Wax MB, Tezel G, Yang J. et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 2008; 28: 12085-12096 doi:10.1523/JNEUROSCI.3200-08.2008
- 39 Joachim SC, Grus FH, Kraft D. et al. Complex antibody profile changes in an experimental autoimmune glaucoma animal model. Invest Ophthalmol Vis Sci 2009; 50: 4734-4742 doi:10.1167/iovs.08-3144
- 40 Grotegut P, Kuehn S, Doepper H. et al. Intravitreal HSP27 injection leads to retinal degeneration in rats. Invest Ophthalmol Vis Sci 2019; 60: 4929
- 41 Asea A, Rehli M, Kabingu E. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277: 15028-15034 doi:10.1074/jbc.M200497200
- 42 Jin C, Cleveland JC, Ao L. et al. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med 2014; 20: 280-289 doi:10.2119/molmed.2014.00058
- 43 Lamb JR, Young DB. T cell recognition of stress proteins. A link between infectious and autoimmune disease. Mol Biol Med 1990; 7: 311-321
- 44 Kol A, Lichtman AH, Finberg RW. et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000; 164: 13-17 doi:10.4049/jimmunol.164.1.13
- 45 Dubey A, Prajapati KS, Swamy M. et al. Heat shock proteins: a therapeutic target worth to consider. Vet World 2015; 8: 46-51 doi:10.14202/vetworld.2015.46-51
- 46 Prakken BJ, Samodal R, Le TD. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci U S A 2004; 101: 4228-4233 doi:10.1073/pnas.0400061101
- 47 Vanags D, Williams B, Johnson B. et al. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 2006; 368: 855-863 doi:10.1016/S0140-6736(06)69210-6
- 48 Bosco A, Romero CO, Breen KT. et al. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 2015; 8: 443-455 doi:10.1242/dmm.018788
- 49 Bordone MP, González Fleitas MF, Pasquini LA. et al. Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem 2017; 142: 323-337 doi:10.1111/jnc.14070
- 50 Plane JM, Shen Y, Pleasure DE. et al. Prospects for minocycline neuroprotection. Arch Neurol 2010; 67: 1442-1448 doi:10.1001/archneurol.2010.191
- 51 Baptiste DC, Powell KJ, Jollimore CA. et al. Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 2005; 134: 575-582 doi:10.1016/j.neuroscience.2005.04.011
- 52 Kuehn S, Grotegut P, Smit A. et al. Important role of microglia in a novel S100B based retina degeneration model. Invest Ophthalmol Vis Sci 2018; 59: 4500
- 53 Wang JW, Liu YM, Zhao XF. et al. Gastrodin protects retinal ganglion cells through inhibiting microglial-mediated neuroinflammation in an acute ocular hypertension model. Int J Ophthalmol 2017; 10: 1483-1489 doi:10.18240/ijo.2017.10.01