Der Nuklearmediziner 2020; 43(02): 115-132
DOI: 10.1055/a-1062-0982
CME-Fortbildung

PET-basierte Bestrahlungsplanung

PET based radiation planning
Michael Grunert
,
Vikas Prasad

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Dr. med. Michael Grunert, Ulm.

Die Strahlentherapie ist fest in der Behandlung von Kopf-Hals-Tumoren verankert, und die [18F]-FDG-PET hat als PET/CT und PET/MRT einen zunehmenden Stellenwert in der personalisierten Therapie bei Kopf-Hals-Tumoren. Der Beitrag thematisiert die elementare Bedeutung einer Erfassung der genauen Tumorausdehnung und der daraus resultierenden Bestimmung der Tumorvolumina in der bildbasierten Strahlentherapieplanung als Grundlage für die erfolgreiche Bestrahlung.

Abstract

Head and neck tumours are associated with high morbidity and mortality. Radiotherapy is an integral part of the treatment of these tumours and [18F]-FDG-PET/CT or PET/MRI is becoming increasingly important in the personalised treatment of head and neck cancer. Advanced tumour stage radiotherapy is combined with chemotherapy and/or surgery. The paper deals with the elementary importance of measuring the exact tumour extent and the resulting determination of the tumour volumes in image-based radiotherapy planning as the basis for successful irradiation. The PET/CT-based target volume definition results in target volume reduction with consecutive protection of risk organs and healthy tissue. Increased glucose metabolism and hypoxic states of cancerous lesions allows PET/CT to correctly identify tumour regions and thereby helps in potential dose escalation for tumour control. PET/MRI shows promising results in the diagnosis of relapses after radiotherapy, but requires further evaluation in larger studies. The [18F]-FDG-PET/CT is ideally suited for therapy evaluation and recurrence diagnosis and has found its way into the ambulatory reimbursement system with some indications due to randomised studies with the highest level of evidence. In addition, the increasing use of machine learning in radiation therapy is emphasised.

Kernaussagen
  • Kopf-Hals-Tumoren sind mit einer hohen Morbidität und Mortalität assoziiert. Die Strahlentherapie ist fest in der Behandlung dieser Tumoren verankert.

  • Die [18F]-FDG-PET als PET/CT und PET/MRT gewinnt zunehmend an Bedeutung in der personalisierten Therapie bei Kopf-Hals-Tumoren.

  • Im fortgeschrittenen Tumorstadium findet die Behandlung als Kombination aus Strahlentherapie und Systemtherapie und/oder Operation statt.

  • Die vorliegende Arbeit geht auf die elementare Bedeutung der Erfassung der genauen Tumorausdehnung und die daraus resultierende Bestimmung der Tumorvolumina in der bildbasierten Strahlentherapieplanung als Grundlage für die erfolgreiche Bestrahlung ein.

  • Die PET/CT-basierte Zielvolumendefinition führt zu einer Zielvolumenreduktion mit konsekutiver Schonung von Risikoorganen und gesundem Gewebe. Sie kann aufgrund des erhöhten FDG-Metabolismus und unter Einsatz von Hypoxietracern Tumorregionen identifizieren, die eine potenzielle Dosiseskalation zur Tumorkontrolle benötigen.

  • Die PET/MRT zeigt vielversprechende Ergebnisse u. a. in der Rezidivdiagnostik nach Radiotherapie, bedarf aber einer weiteren Evaluierung in größeren Studien.

  • Die [18F]-FDG-PET/CT ist hervorragend für die Therapieevaluation und Rezidivdiagnostik geeignet und fand aufgrund von randomisierten Studien mit höchstem Evidenzniveau mit einigen Indikationen Einzug in die vertragsärztliche Versorgung.

  • Das maschinelle Lernen in der Strahlentherapie gewinnt zunehmend an Bedeutung.



Publication History

Article published online:
28 May 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Stromberger C. Primäre und adjuvante Radio(chemo)therapie bei Kopf-Hals-Tumoren. Onkologe 2019; 25: 240-245
  • 2 Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol 2005; 15: 136-145
  • 3 Ligtenberg H, Jager EA, Caldas-Magalhaes J. et al. Modality-specific target definition for laryngeal and hypopharyngeal cancer on FDG-PET, CT and MRI. Radiother Oncol 2017; 123: 63-70
  • 4 Cacicedo J, Navarro A, Del Hoyo O. et al. Role of fluorine-18 fluorodeoxyglucose PET/CT in head and neck oncology: the point of view of the radiation oncologist. Br J Radiol 2016; 89: 20160217
  • 5 Daisne JF, Duprez T, Weynand B. et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004; 233: 93-100
  • 6 Anderson CM, Sun W, Buatti JM. et al. Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR Images of Head and Neck Cancer. Jacobs J Radiat Oncol 2014; 1: 006
  • 7 Rusthoven KE, Koshy M, Paulino AC. The role of fluorodeoxyglucose positron emission tomography in cervical lymph node metastases from an unknown primary tumor. Cancer 2004; 101: 2641-2649
  • 8 Zhu L, Wang N. 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg Oncol 2013; 22: 190-194
  • 9 Büther F. Von PET und PET/CT zur PET/MRT: Ein technologisches Update. Nuklearmediziner 2018; 41: 202-210
  • 10 Geets X, Lee JA, Bol A. et al. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007; 34: 1427-1438
  • 11 Purandare NC, Agrawal A, Shah S. et al. 18F FDG PET/CT: Normal variants, artefacts and pitfalls in head and neck malignancy. In: Wong WL. eds. PET/CT in head and neck cancer. Berlin: Springer; 2018: 29-42
  • 12 Krause BJ, Beyer T, Bockisch A. et al. FDG-PET/CT in der Onkologie. Leitlinie der Deutschen Gesellschaft für Nuklearmedizin e.V. DGN. Nuklearmedizin 2007; 46: 291-301
  • 13 Fukui MB, Blodgett TM, Snyderman CH. et al. Combined PET-CT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging. Radiographics 2005; 25: 913-930
  • 14 Jeong J, Setton JS, Lee NY. et al. Estimate of the impact of FDG-avidity on the dose required for head and neck radiotherapy local control. Radiother Oncol 2014; 111: 340-347
  • 15 Madani I, Duthoy W, Derie C. et al. Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 68: 126-135
  • 16 Henriques de Figueiredo B, Zacharatou C, Galland-Girodet S. et al. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlenther Onkol 2015; 191: 217-224
  • 17 Monnich D, Thorwarth D, Leibfarth S. et al. Overlap of highly FDG-avid and FMISO hypoxic tumor subvolumes in patients with head and neck cancer. Acta Oncol 2017; 56: 1577-1582
  • 18 Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007; 25: 4066-4074
  • 19 Xu Z, Li XF, Zou H. et al. (18)F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 2017; 8: 94969-94979
  • 20 Henriques de Figueiredo B, Merlin T, de Clermont-Gallerande H. et al. Potential of [18F]-fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol 2013; 189: 1015-1019
  • 21 Eschmann S, Paulsen F. Bedeutung der Hypoxiebildgebung mit PET für die Bestrahlungsplanung. Nuklearmediziner 2008; 31: 33-36
  • 22 Chang JH, Wada M, Anderson NJ. et al. Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18)F-FMISO PET: a biological modeling study. Acta Oncol 2013; 52: 1723-1729
  • 23 Lock S, Perrin R, Seidlitz A. et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol 2017; 124: 533-540
  • 24 Carlin S, Humm JL. PET of hypoxia: current and future perspectives. J Nucl Med 2012; 53: 1171-1174
  • 25 Watanabe S, Shiga T, Hirata K. et al. Biodistribution and radiation dosimetry of the novel hypoxia PET probe [(18)F]DiFA and comparison with [(18)F]FMISO. EJNMMI Res 2019; 9: 60
  • 26 Hoeben BA, Troost EG, Span PN. et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 2013; 54: 532-540
  • 27 Szyszko TA, Cook GJR. PET/CT and PET/MRI in head and neck malignancy. Clin Radiol 2018; 73: 60-69
  • 28 Samolyk-Kogaczewska N, Sierko E, Zuzda K. et al. PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlenther Onkol 2019;
  • 29 Wang K, Mullins BT, Falchook AD. et al. Evaluation of PET/MRI for tumor volume delineation for head and neck cancer. Front Oncol 2017; 7: 8
  • 30 Becker M, Varoquaux AD, Combescure C. et al. Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: Diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences. Eur Radiol 2018; 28: 651-663
  • 31 Stumpp P, Purz S, Sabri O. et al. [Molecular imaging of head and neck cancers : Perspectives of PET/MRI]. Radiologe 2016; 56: 588-596
  • 32 Bailey DL, Pichler BJ, Guckel B. et al. Combined PET/MRI: from status quo to status go. Summary report of the Fifth International Workshop on PET/MR Imaging. February 15–19, 2016; Tubingen, Germany. Mol Imaging Biol 2016; 18: 637-650
  • 33 Lagendijk JJ, Raaymakers BW, Van den Berg CA. et al. MR guidance in radiotherapy. Phys Med Biol 2014; 59: R349-369
  • 34 Winter RM, Leibfarth S, Schmidt H. et al. Assessment of image quality of a radiotherapy-specific hardware solution for PET/MRI in head and neck cancer patients. Radiother Oncol 2018; 128: 485-491
  • 35 Rai R, Kumar S, Batumalai V. et al. The integration of MRI in radiation therapy: collaboration of radiographers and radiation therapists. J Med Radiat Sci 2017; 64: 61-68
  • 36 Kao J, Vu HL, Genden EM. et al. The diagnostic and prognostic utility of positron emission tomography/computed tomography-based follow-up after radiotherapy for head and neck cancer. Cancer 2009; 115: 4586-4594
  • 37 Gupta T, Master Z, Kannan S. et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2011; 38: 2083-2095
  • 38 Mehanna H, Wong WL, McConkey CC. et al. PET-CT Surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med 2016; 374: 1444-1454
  • 39 Gemeinsamer Bundesausschuss (G-BA). Tragende Gründe zum Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Richtlinie Methoden vertragsärztliche Versorgung: Positronenemissionstomographie (PET) PET/Computertomographie (CT) bei Kopf-Hals-Tumoren (Juni 2017). Im Internet: (Stand: 27.12.2019) http://www.g-ba.de/downloads/40–268–4266/2017–03–16_MVV-RL_PET-CT-Kopf-Hals-Tumoren_TrG.pdf
  • 40 Ong SC, Schoder H, Lee NY. et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for Locoregional advanced head and neck cancer. J Nucl Med 2008; 49: 532-540
  • 41 Leung AS, Rath TJ, Hughes MA. et al. Optimal timing of first posttreatment FDG PET/CT in head and neck squamous cell carcinoma. Head Neck 2016; 38 (Suppl. 01) E853-858
  • 42 Helsen N, Roothans D, Van Den Heuvel B. et al. 18F-FDG-PET/CT for the detection of disease in patients with head and neck cancer treated with radiotherapy. PLoS One 2017; 12: e0182350
  • 43 Sheikhbahaei S, Ahn SJ, Moriarty E. et al. Intratherapy or posttherapy FDG PET or FDG PET/CT for patients with head and neck cancer: a systematic review and meta-analysis of prognostic studies. Am J Roentgenol 2015; 205: 1102-1113
  • 44 Beswick DM, Gooding WE, Johnson JT. et al. Temporal patterns of head and neck squamous cell carcinoma recurrence with positron-emission tomography/computed tomography monitoring. Laryngoscope 2012; 122: 1512-1517
  • 45 Smith AF, Hall PS, Hulme CT. et al. Cost-effectiveness analysis of PET-CT-guided management for locally advanced head and neck cancer. Eur J Cancer 2017; 85: 6-14
  • 46 Castelli J, De Bari B, Depeursinge A. et al. Overview of the predictive value of quantitative 18 FDG PET in head and neck cancer treated with chemoradiotherapy. Crit Rev Oncol Hematol 2016; 108: 40-51
  • 47 Wang L, Bai J, Duan P. Prognostic value of 18F-FDG PET/CT functional parameters in patients with head and neck cancer: a meta-analysis. Nucl Med Commun 2019; 40: 361-369
  • 48 Kim KR, Shim HJ, Hwang JE. et al. The role of interim FDG PET-CT after induction chemotherapy as a predictor of concurrent chemoradiotherapy efficacy and prognosis for head and neck cancer. Eur J Nucl Med Mol Imaging 2018; 45: 170-178
  • 49 Wong KH, Panek R, Welsh L. et al. The predictive value of early assessment after 1 cycle of induction chemotherapy with 18F-FDG PET/CT and diffusion-weighted mri for response to radical chemoradiotherapy in head and neck squamous cell carcinoma. J Nucl Med 2016; 57: 1843-1850
  • 50 Schinagl DA, Vogel WV, Hoffmann AL. et al. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 69: 1282-1289
  • 51 Perez-Romasanta LA, Bellon-Guardia M, Torres-Donaire J. et al. Tumor volume delineation in head and neck cancer with 18-fluor-fluorodeoxiglucose positron emission tomography: adaptive thresholding method applied to primary tumors and metastatic lymph nodes. Clin Transl Oncol 2013; 15: 283-293
  • 52 Leclerc M, Lartigau E, Lacornerie T. et al. Primary tumor delineation based on (18)FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiother Oncol 2015; 116: 87-93
  • 53 Speer S, Klein A, Kober L. et al. Automation of radiation treatment planning : Evaluation of head and neck cancer patient plans created by the Pinnacle(3) scripting and Auto-Planning functions. Strahlenther Onkol 2017; 193: 656-665
  • 54 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278: 563-577
  • 55 Deist TM, Dankers F, Valdes G. et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Med Phys 2018; 45: 3449-3459
  • 56 Cozzi L, Franzese C, Fogliata A. et al. Predicting survival and local control after radiochemotherapy in locally advanced head and neck cancer by means of computed tomography based radiomics. Strahlenther Onkol 2019;
  • 57 Castelli J, Depeursinge A, Devillers A. et al. PET-based prognostic survival model after radiotherapy for head and neck cancer. Eur J Nucl Med Mol Imaging 2019; 46: 638-649
  • 58 Hatt M, Tixier F, Pierce L. et al. Characterization of PET/CT images using texture analysis: the past, the present … any future?. Eur J Nucl Med Mol Imaging 2017; 44: 151-165