Int J Sports Med 2020; 41(04): 248-254
DOI: 10.1055/a-1073-7754
Orthopedics & Biomechanics
© © Georg Thieme Verlag KG Stuttgart · New York

Hip Adduction and Abduction Torque-angle Curve Characterization of Speed Skating Athletes

Luciano Luporini Menegaldo
1   Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Lyon Aragão
1   Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
2   Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Liliam Fernandes de Oliveira
1   Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2   Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
› Institutsangaben

Funding The authors would like to thank for the financial support of the Brazilian Research agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Weitere Informationen

Publikationsverlauf



accepted 08. November 2019

Publikationsdatum:
14. Januar 2020 (online)

Preview

Abstract

Speed skating is a cyclic sport which involves the hip abductor muscles, impelling the participant forwards, and adductor muscles, in the recovery phase and decelerating the abduction movement eccentrically. This paper has the objective of describing and comparing the abduction/adduction torque-angle curves of speed skating athletes (N=10) with a group of non-practitioners young participants (N=10). Both groups presented similar peak torques and electromyography patterns for tensor fascia lata, gluteus medius, long adductor and adductor magnus. However, athletes showed higher torque-angle curve integral and abduction and adduction peak torques at different hip angles than the control group. These findings suggest an adaptation of their musculotendon actuators and a better capacity to generate mechanical work and power during a propulsion-recovery cycle.